
Collaborative Text Editing: Better, Faster, Smaller
Joseph Gentle

me@josephg.com
Martin Kleppmann

University of Cambridge, UK
martin@kleppmann.com

Abstract
Collaborative text editing algorithms allow several users to
concurrently modify a text file, and automatically merge
concurrent edits into a consistent state. Existing algorithms
fall in two categories: Operational Transformation (OT) al-
gorithms are slow to merge files that have diverged sub-
stantially due to offline editing; CRDTs are slow to load and
consume a lot of memory. We introduce Eg-walker, a col-
laboration algorithm for text that avoids these weaknesses.
Compared to existing CRDTs, it consumes an order of mag-
nitude less memory in the steady state, and loading a doc-
ument from disk is orders of magnitude faster. Compared
to OT, merging long-running branches is orders of magni-
tude faster. In the worst case, the merging performance of
Eg-walker is comparable with existing CRDT algorithms.
Eg-walker can be used everywhere CRDTs are used, includ-
ing peer-to-peer systems without a central server. By offer-
ing performance that is competitive with centralised algo-
rithms, our result paves the way towards the widespread
adoption of peer-to-peer collaboration software.

1 Introduction
Real-time collaboration has become an essential feature for
many types of software, including document editors such
as Google Docs, Microsoft Word, or Overleaf, and graphics
software such as Figma. In such software, each user’s de-
vice locally maintains a copy of the shared file (e.g. in a tab
of their web browser). A user’s edits are immediately ap-
plied to their own local copy, without waiting for a network
round-trip, so that the user interface is responsive regard-
less of network latency. Different users may therefore make
edits concurrently, and the software must merge such con-
current edits in a way that preserves the users’ intentions,
and ensure that all devices converge to the same state.

For example, in Figure 1, two users initially have the same
document “Helo”. User 1 inserts a second letter “l” at index
3, while concurrently user 2 inserts an exclamation mark at
index 4. When user 2 receives the operation 𝐼𝑛𝑠𝑒𝑟𝑡(3, "𝑙")
it can apply it to obtain “Hello!”, but when user 1 receives
𝐼𝑛𝑠𝑒𝑟𝑡(4, "!") it cannot apply that operation as-is, since that
would result in the state “Hell!o”, which would be inconsis-
tent with the other user’s state and the intended insertion
position. Due to the concurrent insertion at an earlier index,
user 1 must insert the exclamation mark at index 5.

One way of solving this problem is to use Operational
Transformation (OT): when user 1 receives 𝐼𝑛𝑠𝑒𝑟𝑡(4, "!")
that operation is transformed with regard to the concurrent

User 1: User 2:

Helo

Hello

Hello!

Helo

Helo!

Hello!

𝐼𝑛𝑠𝑒𝑟𝑡(3, "𝑙") 𝐼𝑛𝑠𝑒𝑟𝑡(4, "!")

𝐼𝑛𝑠𝑒𝑟𝑡(5, "!") 𝐼𝑛𝑠𝑒𝑟𝑡(3, "𝑙")

Figure 1. Two concurrent insertions into a text document.

insertion at index 3, which increments the index at which
the exclamation mark is inserted. OT is an old and widely-
used technique: it was introduced in 1989 [17], and the OT
algorithm Jupiter [40] forms the basis of real-time collabo-
ration in Google Docs [16].

OT is simple and fast in the case of Figure 1, where each
user performed only one operation since the last version
they had in common. In general, if the users each performed
𝑛 operations since their last common version, merging their
states using OT has a cost of at least 𝑂(𝑛2), since each of
one user’s operations must be transformed with respect to
all of the other user’s operations. Some OT algorithms have
a merge complexity that is cubic or even slower [37,47,52].
This is acceptable for online collaboration where 𝑛 is typ-
ically small, but if users may edit a document offline or if
the software supports explicit branching and merging work-
flows [38], an algorithm with complexity 𝑂(𝑛2) can become
impracticably slow. In Section 4 we show a real-life example
document that takes one hour to merge using OT.

Conflict-free Replicated Data Types (CRDTs) have been
proposed as an alternative to OT. The first CRDT for col-
laborative text editing appeared in 2006 [43], and over a
dozen text CRDTs have been published since [31]. These al-
gorithms work by giving each character a unique identifier,
and using those IDs instead of integer indexes to identify the
position of insertions and deletions. This avoids having to
transform operations, since IDs are not affected by concur-
rent operations. Unfortunately, these IDs need to be held in
memory while a document is being edited. Even with care-
ful optimisation, this metadata uses more than 10 times as
much memory as the document text, and makes documents
much slower to load from disk. Some CRDT algorithms also
need to retain IDs of deleted characters (tombstones).

In this paper we propose Event Graph Walker (Eg-walker),
a collaborative editing algorithm that has the strengths of

1

mailto:me@josephg.com
mailto:martin@kleppmann.com


both OT and CRDTs but not their weaknesses. Like OT, Eg-
walker uses integer indexes to identify insertion and dele-
tion positions, and transforms those indexes to merge con-
current operations. When two users concurrently perform
𝑛 operations each, Eg-walker can merge them at a cost of
𝑂(𝑛 log 𝑛), much faster than OT’s cost of 𝑂(𝑛2) or worse.

Eg-walker merges concurrent edits using a CRDT algo-
rithm we designed. Unlike existing algorithms, we invoke
the CRDT only to perform merges of concurrent operations,
and we discard its state as soon as the merge is complete.
We never write the CRDT state to disk and never send it
over the network. While a document is being edited, we
only hold the document text in memory, but no CRDT meta-
data. Most of the time, Eg-walker therefore uses 1–2 orders
of magnitude less memory than a CRDT. During merging,
when Eg-walker temporarily uses more memory, its peak
memory use is comparable to the best known CRDT imple-
mentations.

Eg-walker assumes no central server, so it can be used
over a peer-to-peer network. Although all existing CRDTs
and a few OT algorithms can be used peer-to-peer, most of
them have poor performance compared to the centralised
OT used in production software such as Google Docs. In
contrast, Eg-walker’s performance matches or surpasses
that of centralised algorithms. It therefore paves the way
towards the widespread adoption of peer-to-peer collabo-
ration software, and perhaps overcoming the dominance of
centralised cloud software that exists in the market today.

Collaboration on plain text files is the first application for
Eg-walker. We believe that our approach can be generalised
to other file types such as rich text, spreadsheets, graphics,
presentations, CAD drawings, and more. More generally,
Eg-walker provides a framework for efficient coordination-
free distributed systems, in which nodes can always make
progress independently, but converge eventually [27].

This paper makes the following contributions:

• In Section 3 we introduce Eg-walker, a hybrid CRDT/
OT algorithm for text that is faster and has a vastly
smaller memory footprint than existing CRDTs.

• Since there is no established benchmark for collabo-
rative text editing, we are also publishing a suite of
editing traces of text files for benchmarking. They are
derived from real documents and demonstrate various
patterns of sequential and concurrent editing.

• In Section 4 we use those editing traces to evaluate
the performance of our implementation of Eg-walker,
comparing it to selected CRDTs and an OT implemen-
tation. We measure CPU time to load a document, CPU
time to merge edits from a remote replica, memory us-
age, and file size. Eg-walker improves the state of the
art by orders of magnitude in the best cases, and is
only slightly slower in the worst cases.

• We prove the correctness of Eg-walker in Appendix B.

2 Background
We consider a collaborative plain text editor whose state is
a linear sequence of characters, which may be edited by in-
serting or deleting characters at any position. Such an edit is
captured as an operation; we use the notation 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐) to
denote an operation that inserts character 𝑐 at index 𝑖, and
𝐷𝑒𝑙𝑒𝑡𝑒(𝑖) deletes the character at index 𝑖 (indexes are zero-
based). Our implementation compresses runs of consecutive
insertions or deletions, but for simplicity we describe the
algorithm in terms of single-character operations.

2.1 System model
Each device on which a user edits a document is a replica,
and each replica stores its full editing history. When a user
makes an insertion or deletion, that operation is immedi-
ately applied to the user’s local replica, and then asynchro-
nously sent over the network to any other replicas that have
a copy of the same document. Users can also edit their local
copy while offline; the corresponding operations are then
enqueued and sent when the device is next online.

Our algorithm makes no assumptions about the underly-
ing network via which operations are replicated: any reli-
able broadcast protocol (which detects and retransmits lost
messages) is sufficient. For example, a relay server could
store and forward messages from one replica to the others,
or replicas could use a peer-to-peer gossip protocol. We
make no timing assumptions and can tolerate arbitrary net-
work delay, but we assume replicas are non-Byzantine.

A key property that the collaboration algorithm must sat-
isfy is convergence: any two replicas that have seen the same
set of operations must be in the same document state (i.e., a
text consisting of the same sequence of characters), even if
the operations arrived in a different order at each replica. If
the underlying broadcast protocol ensures that every non-
crashed replica eventually receives every operation, the al-
gorithm achieves strong eventual consistency [48].

2.2 Event graphs
We represent the editing history of a document as an event
graph: a directed acyclic graph (DAG) in which every node
is an event consisting of an operation (insert/delete a char-
acter), a unique ID, and a set of IDs of its parent nodes. When
𝑎 is a parent of 𝑏, we also say 𝑏 is a child of 𝑎, and the graph
contains an edge from 𝑎 to 𝑏. We construct events such that
the graph is transitively reduced (i.e., it contains no redun-
dant edges). When there is a directed path from 𝑎 to 𝑏 we
say that 𝑎 happened before 𝑏, and write 𝑎 → 𝑏 as per Lam-
port [36]. The → relation is a strict partial order. We say that
events 𝑎 and 𝑏 are concurrent, written 𝑎 ∥ 𝑏, if both events
are in the graph, 𝑎 ≠ 𝑏, and neither happened before the
other: 𝑎 ↛ 𝑏 ∧ 𝑏 ↛ 𝑎.

The frontier is the set of events with no children. When-
ever a user performs an operation, a new event containing
that operation is added to the graph, and the previous fron-

2



tier in the replica’s local copy of the graph becomes the new
event’s parents. The new event and its parent edges are then
replicated over the network, and each replica adds them
to its copy of the graph. If any parent events are missing,
the replica waits for them to arrive before adding them to
the graph; the result is a simple causal broadcast protocol
[11,13]. Two replicas can merge their event graphs by taking
the union of their sets of events. Events in the graph are im-
mutable; they always represents the operation as originally
generated, and not as a result of any transformation.

𝑒1 : 𝐼𝑛𝑠𝑒𝑟𝑡(0, "𝐻")

𝑒2 : 𝐼𝑛𝑠𝑒𝑟𝑡(1, "𝑒")

𝑒3 : 𝐼𝑛𝑠𝑒𝑟𝑡(2, "𝑙")

𝑒4 : 𝐼𝑛𝑠𝑒𝑟𝑡(3, "𝑜")

𝑒5 : 𝐼𝑛𝑠𝑒𝑟𝑡(3, "𝑙") 𝑒6 : 𝐼𝑛𝑠𝑒𝑟𝑡(4, "!")
Figure 2. The event graph corresponding to Figure 1.

For example, Figure 2 shows the event graph correspond-
ing to Figure 1. The events 𝑒5 and 𝑒6 are concurrent, and the
frontier of this graph is the set of events {𝑒5, 𝑒6}.

The event graph for a substantial document, such as a re-
search paper, may contain hundreds of thousands of events.
It can nevertheless be stored in a very compact form by ex-
ploiting the typical editing patterns of humans writing text:
characters tend to be inserted or deleted in consecutive runs.
Many portions of a typical event graph are linear, with each
event having one parent and one child. We describe the stor-
age format in more detail in Section 3.8.

2.3 Document versions
Let 𝐺 be an event graph, represented as a set of events.
Due to convergence, any two replicas that have the same
set of events must be in the same state. Therefore, the doc-
ument state (sequence of characters) resulting from 𝐺 must
be 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺), where 𝗋𝖾𝗉𝗅𝖺𝗒 is some pure (deterministic and
non-mutating) function. In principle, any pure function of
the set of events results in convergence, although a 𝗋𝖾𝗉𝗅𝖺𝗒
function that is useful for text editing must satisfy additional
criteria (see Section 3.1).

Consider the event 𝐷𝑒𝑙𝑒𝑡𝑒(𝑖), which deletes the charac-
ter at position 𝑖 in the document. In order to correctly inter-
pret this event, we need to determine which character was
at index 𝑖 at the time when the operation was generated.

More generally, let 𝑒𝑖 be some event. The document state
when 𝑒𝑖 was generated must be 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺𝑖), where 𝐺𝑖 is the
set of events that were known to the generating replica at
the time when 𝑒𝑖 was generated (not including 𝑒𝑖 itself). By
definition, the parents of 𝑒𝑖 are the frontier of 𝐺𝑖, and thus
𝐺𝑖 is the set of all events that happened before 𝑒𝑖, i.e., 𝑒𝑖’s
parents and all of their ancestors. Therefore, the parents of

𝑒𝑖 unambiguously define the document state in which 𝑒𝑖
must be interpreted.

To formalise this, given an event graph (set of events) 𝐺,
we define the version of 𝐺 to be its frontier set:

𝖵𝖾𝗋𝗌𝗂𝗈𝗇(𝐺) = {𝑒1 ∈ 𝐺 | ∄𝑒2 ∈ 𝐺 : 𝑒1 → 𝑒2}

Given some version 𝑉 , the corresponding set of events can
be reconstructed as follows:

𝖤𝗏𝖾𝗇𝗍𝗌(𝑉 ) = 𝑉 ∪ {𝑒1 | ∃𝑒2 ∈ 𝑉 : 𝑒1 → 𝑒2}

Since an event graph grows only by adding events that
are concurrent to or children of existing events (we never
change the parents of an existing event), there is a one-to-
one correspondence between an event graph and its version.
For all valid event graphs 𝐺, 𝖤𝗏𝖾𝗇𝗍𝗌(𝖵𝖾𝗋𝗌𝗂𝗈𝗇(𝐺)) = 𝐺.

The set of parents of an event in the graph is the version of
the document in which that operation must be interpreted.
The version can hence be seen as a logical clock, describing
the point in time at which a replica knows about the exact
set of events in 𝐺. Even if the event graph is large, in prac-
tice a version rarely consists of more than two events.

2.4 Replaying editing history
Collaborative editing algorithms are usually defined in
terms of sending and receiving messages over a network.
The abstraction of an event graph allows us to reframe these
algorithms in a simpler way: a collaborative text editing al-
gorithm is a pure function 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺) of an event graph 𝐺.
This function can use the parent-child relationships to par-
tially order events, but concurrent events could be processed
in any order. This allows us to separate the process of repli-
cating the event graph from the algorithm that ensures con-
vergence. In fact, this is how pure operation-based CRDTs [9]
are formulated, as discussed in Section 5.

In addition to determining the document state from an
entire event graph, we need an incremental update function.
Say we have an existing event graph 𝐺 and corresponding
document state 𝑑𝑜𝑐 = 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺). Then an event 𝑒 from a re-
mote replica is added to the graph. We could rerun the func-
tion to obtain 𝑑𝑜𝑐′ = 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺 ∪ {𝑒}), but it would be inef-
ficient to process the entire graph again. Instead, we need
to efficiently compute the operation to apply to 𝑑𝑜𝑐 in order
to obtain 𝑑𝑜𝑐′. For text documents, this incremental update
is also described as an insertion or deletion at a particular
index; however, the index may differ from that in the orig-
inal event due to the effects of concurrent operations, and
a deletion may turn into a no-op if the same character has
also been deleted by a concurrent operation.

Both OT and CRDT algorithms focus on this incremental
update. If none of the events in 𝐺 are concurrent with 𝑒, OT
is straightforward: the incremental update is identical to the
operation in 𝑒, as no transformation takes place. If there is

3



concurrency, OT must transform each new event with re-
gard to each existing event that is concurrent to it.

In CRDTs, each event is first translated into operations
that use unique IDs instead of indexes, and then these op-
erations are applied to a data structure that reflects all of
the operations seen so far (both concurrent operations and
those that happened before). In order to update the text ed-
itor, these updates to the CRDT’s internal structure need to
be translated back into index-based insertions and deletions.
Many CRDT papers elide this translation from unique IDs
back to indexes, but it is important for practical applications.

Regardless of whether the OT or the CRDT approach is
used, a collaborative editing algorithm can be boiled down
to an incremental update to an event graph: given an event
to be added to an existing event graph, return the (index-
based) operation that must be applied to the current docu-
ment state so that the resulting document is identical to re-
playing the entire event graph including the new event.

3 The Event Graph Walker algorithm
Eg-walker is a collaborative text editing algorithm based on
the idea of event graph replay. The algorithm builds on a
replication layer that ensures that whenever a replica adds
an event to the graph, all non-crashed replicas eventually
receive it. The state of each replica consists of three parts:

1. Event graph: Each replica stores a copy of the event
graph on disk, in a format described in Section 3.8.

2. Document state: The current sequence of characters
in the document with no further metadata. On disk
this is simply a plain text file; in memory it may be
represented as a rope [12], piece table [44], or similar
structure to support efficient insertions and deletions.

3. Internal state: A temporary CRDT structure that Eg-
walker uses to merge concurrent edits. It is not per-
sisted or replicated, and it is discarded when the al-
gorithm finishes running.

Eg-walker can reconstruct the document state by replaying
the entire event graph. It first performs a topological sort,
as illustrated in Figure 3. Then each event is transformed so
that the transformed insertions and deletions can be applied
in topologically sorted order, starting with an empty doc-
ument, to obtain the document state. In Git parlance, this
process “rebases” a DAG of operations into a linear opera-
tion history with the same effect. The input of the algorithm
is the event graph, and the output is this topologically sorted
sequence of transformed operations. While OT transforms
one operation with respect to one other, Eg-walker uses the
internal state to transform operations efficiently.

In graphs with concurrent operations there are multiple
possible sort orders. Eg-walker guarantees that the final
document state is the same, regardless which of these orders
is chosen. However, the choice of sort order may affect the
performance of the algorithm, as discussed in Section 3.7.

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑒A1

𝑒A2

𝑒A3

𝑒A4

𝑒A5

𝑒A6

𝑒B1

𝑒B2

𝑒B3

𝑒B4

𝑒C1

𝑒C2

𝑒C3

𝑒A1

𝑒A2

𝑒A3

𝑒A4

𝑒B1

𝑒B2

𝑒B3

𝑒B4

𝑒C1

𝑒C2

𝑒C3

𝑒A5

𝑒A6

Figure 3. An event graph (left) and one possible topologi-
cally sorted order of that graph (right).

For example, the graph in Figure 2 has two possible sort
orders; Eg-walker either first inserts “l” at index 3 and then
“!” at index 5 (like User 1 in Figure 1), or it first inserts “!” at
index 4 followed by “l” at index 3 (like User 2 in Figure 1).
The final document state is “Hello!” either way.

Event graph replay easily extends to incremental updates
for real-time collaboration: when a new event is added to
the graph, it becomes the next element of the topologically
sorted sequence. We can transform each new event in the
same way as during replay, and apply the transformed op-
eration to the current document state.

3.1 Characteristics of Eg-walker
Eg-walker ensures that the resulting document state is con-
sistent with Attiya et al.’s strong list specification [8] (in
essence, replicas converge to the same state and apply oper-
ations in the right place), and it is maximally non-interleav-
ing [55] (i.e., concurrent sequences of insertions at the same
position are placed one after another, and not interleaved).

One way of achieving this goal would be to track the state
of each branch of the editing history in a separate CRDT
object. The CRDT for a given branch could translate events
from the event graph into the corresponding CRDT oper-
ations. When branches fork, the CRDT object would need
to be cloned in memory. When branches merge, CRDT op-
erations from one branch would be applied to the other
branch’s CRDT state. Essentially, this approach simulates a
network of communicating CRDT replicas and their states.
This approach produces the correct result, but it performs
poorly, as we need to store and update a full copy of the
CRDT state for every concurrent branch in the event graph.

Eg-walker improves on this approach in two ways:

1. Eg-walker avoids the need to clone and merge mul-
tiple CRDT objects. Instead, the algorithm maintains
a single data structure that can transform and merge
events from multiple branches.

2. In portions of the event graph that have no concur-
rency (which, in many editing histories, is the vast
majority of events), events do not need to be trans-
formed at all, and we can discard all of the internal
state accumulated so far.

4



Moreover, Eg-walker does not need the event graph and the
internal state when generating new events, or when adding
an event to the graph that happened after all existing events.
Most of the time, we only need the current document state.
The event graph can remain on disk without using any space
in memory or any CPU time. The event graph is only re-
quired when handling concurrency, and even then we only
have to replay the portion of the graph since the last ances-
tor that the concurrent operations had in common.

Eg-walker’s approach contrasts with existing CRDTs,
which require every replica to persist the internal state (in-
cluding the unique ID for each character) and send it over
the network, and which require that state to be loaded into
memory in order to both generate and receive operations,
even when there is no concurrency. This uses significant
amounts of memory and makes documents slow to load.

OT algorithms avoid this internal state; similarly to Eg-
walker, they only need to persist the latest document state
and the history of operations that are concurrent to opera-
tions that may arrive in the future. In both Eg-walker and
OT, the event graph can be discarded if we know that no
event we may receive in the future will be concurrent with
any existing event. However, OT algorithms are very slow
to merge long-running branches (see Section 4). Some OT
algorithms are only able to handle restricted forms of event
graphs, whereas Eg-walker handles arbitrary DAGs.

3.2 Walking the event graph
For the sake of clarity we first explain a simplified version
of Eg-walker that replays the entire event graph without
discarding its internal state along the way. This approach
incurs some CRDT overhead even for non-concurrent op-
erations. In Section 3.6 we show how the algorithm can be
optimised to replay only a part of the event graph.

First, we topologically sort the event graph in a way that
keeps events on the same branch consecutive as much as
possible: for example, in Figure  3 we first visit 𝑒A1…𝑒A4,
then 𝑒B1…𝑒B4. We avoid alternating between branches, such
as 𝑒A1, 𝑒B1, 𝑒A2, 𝑒B2…, even though that would also be a
valid topological sort. For this we use a standard textbook
algorithm [15]: perform a depth-first traversal starting from
the oldest event, and build up the topologically sorted list
in the order that events are visited. When a node has mul-
tiple children in the graph, we choose their order based on
a heuristic so that branches with fewer events tend to ap-
pear before branches with more events in the sorted order;
this can improve performance (see Section 3.7) but is not
essential. We estimate the size of a branch by counting the
number of events that happened after each event.

The algorithm then processes the events one at a time in
topologically sorted order, updating the internal state and
outputting a transformed operation for each event. The in-
ternal state simultaneously captures the document at two
versions: the version in which an event was generated

(which we call the prepare version), and the version in which
all events seen so far have been applied (which we call the
effect version). If the prepare and effect versions are the
same, the transformed operation is identical to the original
one. In general, the prepare version represents a subset of
the events of the effect version.

The internal state can be updated with three methods,
each of which takes an event as argument:

• 𝖺𝗉𝗉𝗅𝗒(𝑒) updates the prepare version and the effect
version to include 𝑒, assuming that the current prepare
version equals 𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠, and that 𝑒 has not yet been
applied. This method interprets 𝑒 in the context of the
prepare version, and outputs the operation represent-
ing how the effect version has been updated.

• 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒) updates the prepare version to remove 𝑒, as-
suming the prepare version previously included 𝑒.

• 𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒) updates the prepare version to add 𝑒, as-
suming that the prepare version previously did not in-
clude 𝑒, but the effect version did.

𝑒1 : 𝐼𝑛𝑠𝑒𝑟𝑡(0, "ℎ")

𝑒2 : 𝐼𝑛𝑠𝑒𝑟𝑡(1, "𝑖")

𝑒3 : 𝐼𝑛𝑠𝑒𝑟𝑡(0, "𝐻")

𝑒4 : 𝐷𝑒𝑙𝑒𝑡𝑒(1)

𝑒5 : 𝐷𝑒𝑙𝑒𝑡𝑒(1)

𝑒6 : 𝐼𝑛𝑠𝑒𝑟𝑡(1, "𝑒")

𝑒7 : 𝐼𝑛𝑠𝑒𝑟𝑡(2, "𝑦")

𝑒8 : 𝐼𝑛𝑠𝑒𝑟𝑡(3, "!")
Figure 4. An event graph. Starting with document “hi”, one
user changes “hi” to “hey”, while concurrently another user
capitalises the “H”. After merging to the state “Hey”, one of
them appends an exclamation mark to produce “Hey!”.

The effect version only moves forwards in time (through
𝖺𝗉𝗉𝗅𝗒), whereas the prepare version can move both forwards
and backwards. Consider the example in Figure 4, and as-
sume that the events 𝑒1…𝑒8 are traversed in order of their
subscript. These events can be processed as follows:

1. Start in the empty state, and then call 𝖺𝗉𝗉𝗅𝗒(𝑒1),
𝖺𝗉𝗉𝗅𝗒(𝑒2), 𝖺𝗉𝗉𝗅𝗒(𝑒3), and 𝖺𝗉𝗉𝗅𝗒(𝑒4). This is valid be-
cause each event’s parent version is the set of all
events processed so far.

2. Before we can apply 𝑒5 we must rewind the prepare
version to be {𝑒2}, which is the parent of 𝑒5. We can
do this by calling 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒4) and 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒3).

3. Now we can call 𝖺𝗉𝗉𝗅𝗒(𝑒5), 𝖺𝗉𝗉𝗅𝗒(𝑒6), and 𝖺𝗉𝗉𝗅𝗒(𝑒7).
4. The parents of 𝑒8 are {𝑒4, 𝑒7}; before we can apply 𝑒8

we must therefore add 𝑒3 and 𝑒4 to the prepare state
again by calling 𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒3) and 𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒4).

5. Finally, we can call 𝖺𝗉𝗉𝗅𝗒(𝑒8).

5



In complex event graphs such as the one in Figure 3 the same
event may have to be retreated and advanced several times,
but we can process arbitrary DAGs this way. In general, be-
fore applying the next event 𝑒 in topologically sorted order,
compute 𝐺old = 𝖤𝗏𝖾𝗇𝗍𝗌(𝑉𝑝) where 𝑉𝑝 is the current pre-
pare version, and 𝐺new = 𝖤𝗏𝖾𝗇𝗍𝗌(𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠). We then call
𝗋𝖾𝗍𝗋𝖾𝖺𝗍 on each event in 𝐺old − 𝐺new (in reverse topological
sort order), and call 𝖺𝖽𝗏𝖺𝗇𝖼𝖾 on each event in 𝐺new − 𝐺old
(in topological sort order) before calling 𝖺𝗉𝗉𝗅𝗒(𝑒).

3.3 Representing prepare and effect versions
The internal state implements the 𝖺𝗉𝗉𝗅𝗒, 𝗋𝖾𝗍𝗋𝖾𝖺𝗍, and
𝖺𝖽𝗏𝖺𝗇𝖼𝖾 methods by maintaining a CRDT data structure.
This structure consists of a linear sequence of records, one
per character in the document, including tombstones for
deleted characters. Runs of characters with consecutive IDs
and the same properties can be run-length encoded to save
memory. A record is inserted into this sequence by 𝖺𝗉𝗉𝗅𝗒(𝑒𝑖)
for an insertion event 𝑒𝑖. Subsequent deletion events and
𝗋𝖾𝗍𝗋𝖾𝖺𝗍/𝖺𝖽𝗏𝖺𝗇𝖼𝖾 calls may modify properties of the record,
but records in the sequence are not removed or reordered
once they have been inserted.

When the event graph contains concurrent insertions, we
use a CRDT to ensure that all replicas place the records in
this sequence in the same order, regardless of the order in
which the event graph is traversed. For example, RGA [47]
or YATA [41] could be used for this purpose. Our implemen-
tation of Eg-walker uses a variant of the Yjs algorithm [28],
itself based on YATA, that we conjecture to be maximally
non-interleaving. We leave a detailed analysis of this algo-
rithm to future work, since it is not core to this paper.

Each record in this sequence contains:
• the ID of the event that inserted the character;
• 𝑠𝑝 ∈ {𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝, 𝙸𝚗𝚜, 𝙳𝚎𝚕 𝟷, 𝙳𝚎𝚕 𝟸, …}, the

character’s state in the prepare version;
• 𝑠𝑒 ∈ {𝙸𝚗𝚜, 𝙳𝚎𝚕}, the state in the effect version;
• and any other fields required by the CRDT to deter-

mine the order of concurrent insertions.

The rules for updating 𝑠𝑝 and 𝑠𝑒 are:

• When a record is first inserted by 𝖺𝗉𝗉𝗅𝗒(𝑒𝑖) with an
insertion event 𝑒𝑖, it is initialised with 𝑠𝑝 = 𝑠𝑒 = 𝙸𝚗𝚜.

• If 𝖺𝗉𝗉𝗅𝗒(𝑒𝑑) is called with a deletion event 𝑒𝑑, we set
𝑠𝑒 = 𝙳𝚎𝚕 in the record representing the deleted char-
acter. In the same record, if 𝑠𝑝 = 𝙸𝚗𝚜 we update it to
𝙳𝚎𝚕 𝟷, and if 𝑠𝑝 = 𝙳𝚎𝚕 𝑛 it advances to 𝙳𝚎𝚕 (𝑛 + 1),
as shown in Figure 5.

• If 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒𝑖) is called with insertion event 𝑒𝑖, we must
have 𝑠𝑝 = 𝙸𝚗𝚜 in the record affected by the event, and
we update it to 𝑠𝑝 = 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝. Conversely,
𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒𝑖) moves 𝑠𝑝 from 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝 to 𝙸𝚗𝚜.

• If 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒𝑑) is called with a deletion event 𝑒𝑑, we
must have 𝑠𝑝 = 𝙳𝚎𝚕 𝑛 in the affected record, and we

update it to 𝙳𝚎𝚕 (𝑛 − 1) if 𝑛 > 1, or to 𝙸𝚗𝚜 if 𝑛 = 1.
Calling 𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒𝑑) performs the opposite.

NIY Ins Del 1 Del 2 ⋯

𝖺𝖽𝗏𝖺𝗇𝖼𝖾 : 𝐼𝑛𝑠𝑒𝑟𝑡 𝐷𝑒𝑙𝑒𝑡𝑒 𝐷𝑒𝑙𝑒𝑡𝑒 𝐷𝑒𝑙𝑒𝑡𝑒

𝗋𝖾𝗍𝗋𝖾𝖺𝗍 : 𝐼𝑛𝑠𝑒𝑟𝑡 𝐷𝑒𝑙𝑒𝑡𝑒 𝐷𝑒𝑙𝑒𝑡𝑒 𝐷𝑒𝑙𝑒𝑡𝑒

Figure 5. State machine for internal state variable 𝑠𝑝.

As a result, 𝑠𝑝 and 𝑠𝑒 are Ins if the character is visible (in-
serted but not deleted) in the prepare and effect version re-
spectively; 𝑠𝑝 = 𝙳𝚎𝚕 𝑛 indicates that the character has been
deleted by 𝑛 concurrent delete events in the prepare version;
and 𝑠𝑝 = 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝 indicates that the insertion of
the character has been retreated in the prepare version. 𝑠𝑒
does not count the number of deletions and does not have a
𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝 state since we never remove the effect of
an operation from the effect version.

“H”
𝑖𝑑 : 3
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

“h”
𝑖𝑑 : 1
𝑠𝑝 : 𝙳𝚎𝚕 𝟷
𝑠𝑒 : 𝙳𝚎𝚕

“i”
𝑖𝑑 : 2
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

“H”
𝑖𝑑 : 3
𝑠𝑝 : 𝙽𝙸𝚈
𝑠𝑒 : 𝙸𝚗𝚜

“h”
𝑖𝑑 : 1
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙳𝚎𝚕

“i”
𝑖𝑑 : 2
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒4)

𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒3)

Figure 6. Left: the internal state after applying 𝑒1…𝑒4 from
Figure 4. Right: after 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒4) and 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒3), the prepare
state is updated to mark “H” as NotInsertedYet, and the
deletion of “h” is undone. The effect state is unchanged.

For example, Figure  6 shows the state after applying
𝑒1…𝑒4 from Figure 4, and how that state is updated by re-
treating 𝑒4 and 𝑒3 before 𝑒5 is applied. In the effect state, the
lowercase “h” is marked as deleted, while the uppercase “H”
and the “i” are visible. In the prepare state, by retreating 𝑒4
and 𝑒3 the “H” is marked as NotInsertedYet, and the dele-
tion of “h” is undone (𝑠𝑝 = 𝙸𝚗𝚜).

“H”
𝑖𝑑 : 3
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

“h”
𝑖𝑑 : 1
𝑠𝑝 : 𝙳𝚎𝚕 𝟷
𝑠𝑒 : 𝙳𝚎𝚕

“e”
𝑖𝑑 : 6
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

“y”
𝑖𝑑 : 7
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

“!”
𝑖𝑑 : 8
𝑠𝑝 : 𝙸𝚗𝚜
𝑠𝑒 : 𝙸𝚗𝚜

“i”
𝑖𝑑 : 2
𝑠𝑝 : 𝙳𝚎𝚕 𝟷
𝑠𝑒 : 𝙳𝚎𝚕

Figure 7. The internal Eg-walker state after replaying all of
the events in Figure 4.

Figure 7 shows the state after replaying all of the events
in Figure 4: “i” is also deleted, the characters “e” and “y” are
inserted immediately after the “h”, 𝑒3 and 𝑒4 are advanced
again, and finally “!” is inserted after the “y”. The figures in-
clude the character for the sake of readability, but Eg-walker
actually does not store text content in its internal state.

3.4 Mapping indexes to character IDs
In the event graph, insertion and deletion operations spec-
ify the index at which they apply. In order to update Eg-

6



walker’s internal state, we need to map these indexes to the
correct record in the sequence, based on the prepare state
𝑠𝑝. To produce the transformed operations, we need to map
the positions of these internal records back to indexes again
– this time based on the effect state 𝑠𝑒.

A simple but inefficient algorithm would be: to apply a
𝐷𝑒𝑙𝑒𝑡𝑒(𝑖) operation we iterate over the sequence of records
and pick the 𝑖th record with a prepare state of 𝑠𝑝 = 𝙸𝚗𝚜 (i.e.,
the 𝑖th among the characters that are visible in the prepare
state, which is the document state in which the operation
should be interpreted). Similarly, to apply 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐) we
skip over 𝑖 − 1 records with 𝑠𝑝 = 𝙸𝚗𝚜 and insert the new
record after the last skipped record (if there have been con-
current insertions at the same position, we may also need
to skip over some records with 𝑠𝑝 = 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝, as
determined by the list CRDT’s insertion ordering).

To reduce the cost of this algorithm from 𝑂(𝑛) to
𝑂(log 𝑛), where 𝑛 is the number of characters in the docu-
ment, we construct a B-tree whose leaves, from left to right,
contain the sequence of records representing characters. We
extend the tree into an order statistic tree [15] (also known
as ranked B-tree) by adding two integers to each node: the
number of records with 𝑠𝑝 = 𝙸𝚗𝚜 contained within that
subtree, and the number of records with 𝑠𝑒 = 𝙸𝚗𝚜 in that
subtree. Every time 𝑠𝑝 or 𝑠𝑒 are updated, we also update
those numbers on the path from the updated record to the
root. As the tree is balanced, this update takes 𝑂(log 𝑛).

Now we can find the 𝑖th record with 𝑠𝑝 = 𝙸𝚗𝚜 in loga-
rithmic time by starting at the root of the tree, and adding up
the values in the subtrees that have been skipped. Moreover,
once we have a record in the sequence we can efficiently
determine its index in the effect state by going in the oppo-
site direction: working upwards in the tree towards the root,
and summing the numbers of records with 𝑠𝑒 = 𝙸𝚗𝚜 that lie
in subtrees to the left of the starting record. This allows us
to efficiently transform the index of an operation from the
prepare version into the effect version. If the character was
already deleted in the effect version (𝑠𝑒 = 𝙳𝚎𝚕), the trans-
formed operation is a no-op.

The above process makes 𝖺𝗉𝗉𝗅𝗒(𝑒𝑖) efficient. We also need
to efficiently perform 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒𝑖) and 𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒𝑖), which
modify the prepare state 𝑠𝑝 of the record inserted or deleted
by 𝑒𝑖. While advancing/retreating we cannot look up a tar-
get record by its index. Instead, we maintain a second B-
tree, mapping from each event’s ID to the target record. The
mapping stores a value depending on the type of the event:

• For delete events, we store the ID of the character
deleted by the event.

• For insert events, we store a pointer to the leaf node in
the first B-tree that contains the corresponding record.
When nodes in the first B-tree are split, we update the
pointers in the second B-tree accordingly.

On every 𝖺𝗉𝗉𝗅𝗒(𝑒), after updating the sequence as above, we
update this mapping. When we subsequently call 𝗋𝖾𝗍𝗋𝖾𝖺𝗍(𝑒)
or 𝖺𝖽𝗏𝖺𝗇𝖼𝖾(𝑒), that event 𝑒 must have already been applied,
and hence 𝑒.𝑖𝑑 must appear in this mapping. This map al-
lows us to advance or retreat in logarithmic time.

3.5 Clearing the internal state
As described so far, the algorithm retains every insertion
since document creation forever in its internal state, con-
suming a lot of memory, and requiring the entire event
graph to be replayed in order to restore the internal state.
We now introduce a further optimisation that allows Eg-
walker to completely discard its internal state from time to
time, and replay only a subset of the event graph.

We define a version 𝑉 ⊆ 𝐺 to be a critical version in an
event graph 𝐺 iff it partitions the graph into two subsets
of events 𝐺1 = 𝖤𝗏𝖾𝗇𝗍𝗌(𝑉 ) and 𝐺2 = 𝐺 − 𝐺1 such that all
events in 𝐺1 happened before all events in 𝐺2:

∀𝑒1 ∈ 𝐺1 : ∀𝑒2 ∈ 𝐺2 : 𝑒1 → 𝑒2.

Equivalently, 𝑉  is a critical version iff every event in the
graph is either in 𝑉 , or an ancestor of some event in 𝑉 , or
happened after all of the events in 𝑉 :

∀𝑒1 ∈ 𝐺 : 𝑒1 ∈ 𝖤𝗏𝖾𝗇𝗍𝗌(𝑉 ) ∨ (∀𝑒2 ∈ 𝑉 : 𝑒2 → 𝑒1).

A critical version might not remain critical forever; it is pos-
sible for a critical version to become non-critical because a
concurrent event is added to the graph.

A key insight in the design of Eg-walker is that critical
versions partition the event graph into sections that can be
processed independently. Events that happened at or before
a critical version do not affect how any event after the criti-
cal version is transformed. This observation enables two im-
portant optimisations:

• Any time the version of the event graph processed so
far is critical, we can discard the internal state (includ-
ing both B-trees and all 𝑠𝑝 and 𝑠𝑒 values), and replace
it with a placeholder as explained in Section 3.6.

• If both an event’s version and its parent version are
critical versions, there is no need to traverse the B-
trees and update the CRDT state, since we would im-
mediately discard that state anyway. In this case, the
transformed event is identical to the original event, so
the event can simply be emitted as-is.

These optimisations make it very fast to process documents
that are mostly edited sequentially (e.g., because the authors
took turns and did not write concurrently, or because there
is only a single author), since most of the event graph of
such a document is a linear chain of critical versions.

The internal state can be discarded once replay is com-
plete, although it is also possible to retain the internal state
for transforming future events. If a replica receives events

7



that are concurrent with existing events in its graph, but
the replica has already discarded its internal state resulting
from those events, it needs to rebuild some of that state. It
can do this by identifying the most recent critical version
that happened before the new events, replaying the existing
events that happened after that critical version, and finally
applying the new events. Events from before that critical
version are not replayed. Since most editing histories have
critical versions from time to time, this means that usually
only a small subset of the event graph is replayed. In the
worst case, this algorithm replays the entire event graph.

3.6 Partial event graph replay
Assume that we want to add event 𝑒new to the event graph
𝐺, that 𝑉curr = 𝖵𝖾𝗋𝗌𝗂𝗈𝗇(𝐺) is the current document version
reflecting all events except 𝑒new, and that 𝑉crit ≠ 𝑉curr is the
latest critical version in 𝐺 ∪ {𝑒new} that happened before
both 𝑒new and 𝑉curr. Further assume that we have discarded
the internal state, so the only information we have is the
latest document state at 𝑉curr and the event graph; in par-
ticular, without replaying the entire event graph we do not
know the document state at 𝑉crit.

Luckily, the exact internal state at 𝑉crit is not needed. All
we need is enough state to transform 𝑒new and rebase it onto
the document at 𝑉curr. This internal state can be obtained by
replaying the events since 𝑉crit, that is, 𝐺 − 𝖤𝗏𝖾𝗇𝗍𝗌(𝑉crit),
in topologically sorted order:

1. We initialise a new internal state corresponding to
version 𝑉crit. Since we do not know the the document
state at this version, we start with a single placeholder
record representing the unknown document content.

2. We update the internal state by replaying events from
𝑉crit to 𝑉curr, but we do not output transformed oper-
ations during this stage.

3. Finally, we apply the new event 𝑒new and output the
transformed operation. If we received a batch of new
events, we apply them in topologically sorted order.

The placeholder record we start with in step 1 represents the
range of indexes [0, ∞] of the document state at 𝑉crit (we do
not know the length of the document at that version, but we
can still have a placeholder for arbitrarily many indexes).
Placeholders are counted as the number of characters they
represent in the order statistic tree construction, and they
have the same length in both the prepare and the effect ver-
sions. We then apply events as follows:

• Applying an insertion at index 𝑖 creates a record with
𝑠𝑝 = 𝑠𝑒 = 𝙸𝚗𝚜 and the ID of the insertion event. We
map the index to a record in the sequence using the
prepare state as usual; if 𝑖 falls within a placeholder for
range [𝑗, 𝑘], we split it into a placeholder for [𝑗, 𝑖 − 1],
followed by the new record, followed by a placeholder
for [𝑖, 𝑘]. Placeholders for empty ranges are omitted.

• Applying a deletion at index 𝑖: if the deleted charac-
ter was inserted prior to 𝑉crit, the index must fall
within a placeholder with some range [𝑗, 𝑘]. We split
it into a placeholder for [𝑗, 𝑖 − 1], followed by a new
record with 𝑠𝑝 = 𝙳𝚎𝚕 𝟷 and 𝑠𝑒 = 𝙳𝚎𝚕, followed by a
placeholder for [𝑖 + 1, 𝑘]. The new record has a place-
holder ID that only needs to be unique within the local
replica, and need not be consistent across replicas.

• Applying a deletion of a character inserted since 𝑉crit
updates the record created by the insertion.

Before applying an event we retreat and advance as usual.
The algorithm never needs to retreat or advance an event
that happened before 𝑉crit, therefore every retreated or ad-
vanced event ID must exist in second B-tree.

If there are concurrent insertions at the same position, we
invoke the CRDT algorithm to place them in a consistent
order as discussed in Section 3.3. Since all concurrent events
must be after 𝑉crit, they are included in the replay. When we
are seeking for the insertion position, we never need to seek
past a placeholder, since the placeholder represents charac-
ters that were inserted before 𝑉crit.

3.7 Algorithm complexity
Say we have two users who have been working offline, gen-
erating 𝑘 and 𝑚 events respectively. When they come on-
line and merge their event graphs, the latest critical version
is immediately prior to the branching point. If the branch of
𝑘 events comes first in the topological sort, the replay algo-
rithm first applies 𝑘 events, then retreats 𝑘 events, applies
𝑚 events, and finally advances 𝑘 events again. Asymptoti-
cally, 𝑂(𝑘 + 𝑚) calls to apply/retreat/advance are required
regardless of the order of traversal, although in practice the
algorithm is faster if 𝑘 < 𝑚 since we don’t need to retreat/
advance on the branch that is visited last.

Each apply/retreat/advance requires one or two traver-
sals of first B-tree, and at most one traversal of the second B-
tree. The upper bound on the number of entries in each tree
(including placeholders) is 2(𝑘 + 𝑚) + 1, since each event
generates at most one new record and one placeholder split.
Since the trees are balanced, the cost of each traversal is
𝑂(log(𝑘 + 𝑚)). Overall, the cost of merging branches with
𝑘 and 𝑚 events is therefore 𝑂((𝑘 + 𝑚) log(𝑘 + 𝑚)).

We can also give an upper bound on the complexity of re-
playing an event graph with 𝑛 events. Each event is applied
exactly once, and before each event we retreat or advance
each prior event at most once, at 𝑂(log 𝑛) cost. The worst-
case complexity of the algorithm is therefore 𝑂(𝑛2 log 𝑛),
but this case is unlikely to occur in practice.

3.8 Storing the event graph
To store the event graph compactly on disk, we developed
a compression technique that takes advantage of how peo-
ple typically write text documents: namely, they tend to in-

8



sert or delete consecutive sequences of characters, and less
frequently hit backspace or move the cursor to a new lo-
cation. Eg-walker’s event graph storage format is inspired
by the Automerge CRDT library [25,33], which in turn uses
ideas from column-oriented databases [6,50]. We also bor-
row some bit-packing tricks from the Yjs CRDT library [28].

We first topologically sort the events in the graph. Differ-
ent replicas may sort the graph differently, but locally to one
replica we can identify an event by its index in this sorted
order. Then we store different properties of events in sep-
arate byte sequences called columns, which are then com-
bined into one file with a simple header. Each column stores
some different fields of the event data. The columns are:

• Event type, start position, and run length. For exam-
ple, “the first 23 events are insertions at consecutive
indexes starting from index 0, the next 10 events are
deletions at consecutive indexes starting from index
7,” and so on. We encode this using a variable-length
binary encoding of integers, which represents small
numbers in one byte, larger numbers in two bytes, etc.

• Inserted content. An insertion event contains exactly
one character (a Unicode scalar value), and a deletion
does not. We concatenate the UTF-8 encoding of the
characters for insertion events in the same order as
they appear in the first column, and LZ4-compress.

• Parents. By default we assume that every event has ex-
actly one parent, namely its predecessor in the topo-
logical sort. Any events for which this is not true
are listed explicitly, for example: “the first event has
zero parents; the 153rd event has two parents, namely
events numbers 31 and 152;” and so on.

• Event IDs. Each event is uniquely identified by a pair
of a replica ID and a per-replica sequence number.
This column stores runs of event IDs, for example: “the
first 1085 events are from replica 𝐴, starting with se-
quence number 0; the next 595 events are from replica
𝐵, starting with sequence number 0;” and so on.

Replicas can optionally also store a copy of the final docu-
ment state reflecting all events. This allows documents to be
loaded from disk without replaying the event graph.

We send the same data format over the network when
replicating the entire event graph. When sending a subset
of events over the network (e.g., a single event during real-
time collaboration), references to parent events outside of
that subset need to be encoded using event IDs of the form
(𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝐼𝐷, 𝑠𝑒𝑞𝑁𝑜), but otherwise the encoding is similar.

4 Evaluation
We created a TypeScript implementation of Eg-walker opti-
mised for simplicity and readability [19], and a production-
ready Rust implementation optimised for performance [20].

The TypeScript version omits the run-length encoding of in-
ternal state, B-trees, and topological sorting heuristics.

To evaluate the correctness of Eg-walker we proved that
the algorithm complies with Attiya et al.’s strong list specifi-
cation [8] (see Appendix B). We also performed randomised
property testing on the implementations, including check-
ing that our implementations converge to the same result.

To evaluate its performance, we compare the Rust im-
plementation of Eg-walker with two popular CRDT li-
braries: Automerge v0.5.9 [1] (Rust) and Yjs v13.6.10 [28]
(JavaScript).¹ We only test their collaborative text datatypes,

¹We also tested Yrs [53], the Rust rewrite of Yjs by the original au-
thors. It performed worse than Yjs, so we omitted it from our results.

and not the other features they support. However, the per-
formance of these libraries varies widely. In an effort to
distinguish between implementation differences and algo-
rithmic differences, we have also implemented our own per-
formance-optimised reference CRDT library. This library
shares most of its code with our Rust Eg-walker implemen-
tation, enabling a more like-to-like comparison between the
traditional CRDT approach and Eg-walker. Our reference
CRDT outperforms both Yjs and Automerge.

We have also implemented a simple OT library using the
TTF algorithm [42]. (We do not use the server-based Jupiter
algorithm [40] or the popular OT library ShareDB [21] be-
cause they do not support the branching and merging pat-
terns that occur in some of our dataset.)

We compare these implementations along 3 dimensions:²

²Experimental setup: We ran the benchmarks on a Ryzen 7950x CPU
running Linux 6.5.0-28 and 64GB of RAM. We compiled Rust code with
rustc v1.78.0 in release mode with '-C target-cpu=native'. Rust code
was pinned to a single CPU core to reduce variance across runs. For
JavaScript (Yjs) we used Node.js v22.2.0. All reported time measure-
ments are the mean of at least 100 test iterations (except for the case
where OT takes an hour to merge trace A2, which we ran 10 times).
The standard deviation for all benchmark results was less than 1.2% of
the mean, except for the Yjs measurements, which had a stddev of less
than 6%. Error bars on our graphs are too small to be visible.

Speed The CPU time to load a document into memory, and
to merge a set of updates from a remote replica.

Memory usage The RAM used while a document is loaded
and while merging remote updates.

Storage size The number of bytes needed to persistently
store a document or replicate it over the network.

4.1 Editing traces
As there is no established benchmark for collaborative text
editing, we collected a set of editing traces from real doc-
uments. We have made these traces freely available on
GitHub [22]. For this evaluation we use seven traces, which
fall into three categories:

Sequential Traces (S1, S2, S3): One author, or multiple au-
thors taking turns (no concurrency).

9



Concurrent Traces (C1, C2): Multiple users concurrently
editing the same document with ≈1 second latency.
Many short-lived branches with frequent merges.

Asynchronous Traces (A1, A2): Event graphs derived
from branching/merging Git commit histories. Multi-
ple long-running branches and infrequent merges.

We recorded the sequential and concurrent traces with key-
stroke granularity using an instrumented text editor. To
make the traces easier to compare, we normalised them so
that each trace contains ≈500k inserted characters (about
100 printed pages). We extended shorter traces to this length
by repeating them several times. See Appendix A for details.

4.2 Time taken to load and merge changes
The slowest operations in many collaborative editors are:

• merging a large set of edits from a remote replica into
the local state (e.g. reconnecting after working offline);

• loading a document from disk into memory so that it
can be displayed and edited.

To simulate a worst-case merge, we start with an empty
document and then merge an entire editing trace into it. In
the case of Eg-walker this means replaying the full trace.
Figure 8 shows the merge time for each implementation.

After completing this merge, we saved the resulting local
replica state to disk and measured the CPU time to load it
back into memory. In the CRDT implementations we tested,
loading a document from disk is equivalent to merging the
remote events, so we do not show CRDT loading times
separately in Figure 8. In these algorithms, the CRDT meta-
data needs to be in memory for the user to be able to edit
the document, or to apply any updates received from other
replicas (even when there is no concurrency). In contrast,
OT and Eg-walker can load documents orders of magnitude
faster than CRDTs by caching the final document state on
disk, and loading just this data (essentially a plain text file).
Eg-walker and OT only need to load the event graph when
merging concurrent changes or to reconstruct old document
versions. Document edits by the local user or applying non-
concurrent remote events do not need the event graph.

We can see in Figure 8 that Eg-walker and OT are very
fast to merge the sequential traces (S1, S2, S3), since they
simply apply the operations with no transformation. How-
ever, OT performance degrades dramatically on the asyn-
chronous traces (6 seconds for A1, and 1 hour for A2) due
to the quadratic complexity of the algorithm, whereas Eg-
walker remains fast (160,000× faster in the case of A2).

On the concurrent traces (C1, C2) and asynchronous trace
A2, the merge time of Eg-walker is similar to that of our ref-
erence CRDT, since they perform similar work. Both are sig-
nificantly faster than the state-of-the-art Yjs and Automerge
CRDT libraries; this is due to implementation differences
and not fundamental algorithmic reasons.

Figure 8. The CPU time taken by each algorithm to merge
all events in each trace (as received from a remote replica),
or to reload the resulting document from disk. The CRDT
implementations (Ref CRDT, Automerge and Yjs) take the
same amount of time to merge changes as they do to subse-
quently load the document. The red line at 16 ms indicates
the time budget available to an application that wants to
show the results of an operation by the next frame, assum-
ing a display with a 60 Hz refresh rate.

On the sequential traces Eg-walker outperforms our ref-
erence CRDT by a factor of 7–10×, and on trace A1 (which
contains large sequential sections) Eg-walker is 5× faster.
Comparing to Yjs or Automerge, this speedup is greater still.
This is due to Eg-walker’s ability to clear its internal state
and skip all of the internal state manipulation on critical ver-
sions (Section 3.5). To quantify this effect, we compare Eg-
walker’s performance with a version of the algorithm that
has these optimisations disabled. Figure 9 shows the time
taken to replay all our traces with this optimisation enabled
and disabled. We see that the optimisation is effective for
S1, S2, S3, and A1, whereas for C1, C2, and A2 it makes little
difference (A2 contains no critical versions).

Automerge’s merge times on traces C1 and C2 are out-
liers. This appears to be a bug, which we have reported.

When merging an event graph with very high concur-
rency (like A2), the performance of Eg-walker is highly
dependent on the order in which events are traversed. A
poorly chosen traversal order can make this trace as much

10



Figure 9. Time taken for Eg-walker to merge all events in a
trace, with and without the optimisations from Section 3.5.

as 8× slower to merge. Our topological sort algorithm (Sec-
tion 3.2) tries to avoid such pathological cases.

4.3 RAM usage
Figure 10 shows the memory footprint (retained heap size)
of each algorithm. The memory used by Eg-walker and OT
is split into peak usage (during the merge process) and the
“steady state” memory usage, after temporary data such as
Eg-walker’s internal state is discarded and the event graph
is written out to disk. For the CRDTs the figure shows steady
state memory usage; peak usage is up to 25% higher.

Eg-walker’s peak memory use is similar to our reference
CRDT’s steady state: slightly lower on the sequential traces,
and approximately double for the concurrent traces. How-
ever, the steady-state memory use of Eg-walker is 1–2 or-
ders of magnitude lower than the best CRDT. This is a sig-
nificant result, since the steady state is what matters during
normal operation while a document is being edited. Note
that peak memory usage would be lower when replaying a
subset of an event graph, which is the common case.

Yjs has 2–3× greater memory use than our reference
CRDT on most traces, and Automerge an order of magni-
tude greater. Automerge’s very high memory use on C1 and
C2 is probably a bug. The computer we used for benchmark-
ing had enough RAM to prevent swapping in all cases.

OT has the same memory use as Eg-walker in the steady
state, but significantly higher peak memory use on the C1,
C2, and A2 traces (6.8 GiB for A2). The reason is that our OT
implementation memoizes intermediate transformed oper-
ations to improve performance. This memory use could be
reduced at the cost of increased merge times.

4.4 Storage size
Our binary encoding of event graphs (Section 3.8) results in
smaller files than the equivalent internal CRDT state per-
sisted by Automerge or Yjs. To ensure a like-for-like com-
parison we have disabled Eg-walker’s built-in LZ4 and Au-
tomerge’s built-in gzip compression. Enabling this compres-
sion further reduces the file sizes.

Automerge stores the full editing history of a document,
and Figure 11 shows the resulting file sizes relative to the
raw concatenated text content of all insertions, with and
without a cached copy of the final document state (to en-

Figure 10. RAM used while merging an editing trace re-
ceived from another replica. Eg-walker and OT only retain
the current document text in the steady state, but need ad-
ditional RAM at peak while merging concurrent changes.

able fast loads). Even with this additional document text,
Eg-walker’s files are smaller on all traces except S1.

In contrast, Yjs only stores the text of the final, merged
document. This results in a smaller file size, at the cost of
making it impossible to reconstruct earlier document states.
Figure 12 compares Yjs to the equivalent event graph en-
coding in which we only store the final document text and
operation metadata. Our encoding is smaller than Yjs on all
traces. The overhead of storing the event graph is between
20% and 3× the final plain text file size.

5 Related Work
Eg-walker is an example of a pure operation-based CRDT
[9], which is a family of algorithms that capture a DAG (or
partially ordered log) of operations in the form they were
generated, and define the current state as a query over that
log. However, existing publications on pure operation-based
CRDTs [7,10] present only datatypes such as maps, sets, and
registers; Eg-walker adds a list/text datatype to this family.

MRDTs [49] are similarly based on a DAG, and use a
three-way merge function to combine two branches since
their lowest common ancestor; if the LCA is not unique, a
recursive merge is used. MRDTs for various datatypes have
been defined, but so far none offers text with arbitrary in-
sertion and deletion.

Toomim’s time machines approach [54] shares a concep-
tual foundation with Eg-walker: both are based on travers-

11



Figure 12. File size storing edit traces using Eg-walker’s
event graph encoding (with and without final document
caching) compared to Automerge. The lightly shaded region
in each bar shows the concatenated length of all stored text.
This acts as lower bound on the file size.

Figure 12. File size storing edit traces in which deleted text
content has been omitted, as is the case with Yjs. The lightly
shaded region in each bar is the size of the final document,
which is a lower bound on the file size.

ing an event graph, with operations being transformed from
their original form into a form that can be applied in topo-
logically sorted order. Toomim also points out that CRDTs
can implement this transformation. Eg-walker is a concrete,
optimised implementation of the time machine approach;
novel contributions of Eg-walker include updating the pre-
pare version by retreating and advancing, as well as the de-
tails of internal state clearing and partial event graph replay.

Eg-walker is also an operational transformation (OT) al-
gorithm [17]. OT has a long lineage of research going back
to the 1990s [40,46,51]. To our knowledge, all existing OT
algorithms consist of a set of transformation functions that
transform one operation with regard to one other operation,
and a control algorithm that traverses an editing history
and invokes the necessary transformations. A problem with
this architecture is that when two replicas have diverged
and each performed 𝑛 operations, merging their states un-
avoidably has a cost of at least 𝑂(𝑛2); in some OT algo-
rithms the cost is cubic or even worse [37,47,52]. Eg-walker
departs from the transformation function/control algorithm
architecture and instead performs transformations using an

internal CRDT state, which reduces the merging cost to
𝑂(𝑛 log 𝑛) in most cases; the upper bound of 𝑂(𝑛2 log 𝑛) is
unlikely to occur in practical editing histories.

Other collaborative text editing algorithms [45,47,55,56]
belong to the family of conflict-free replicated data types
(CRDTs) [48]. To our knowledge, all existing CRDTs for text
work by assigning each character a unique ID, and translat-
ing index-based insertions and deletions into ID-based ones.
These unique IDs need to be held in memory when a doc-
ument is being edited, persisted for the lifetime of the doc-
ument, and sent to all replicas. In contrast, Eg-walker uses
unique IDs only transiently during replay but does not per-
sist or replicate them, and it can free all of its internal state
whenever a critical version is reached. Eg-walker needs to
store the event graph as long as concurrent operations may
arrive, but this takes less space than CRDT state, and it only
needs to be in-memory while merging concurrent opera-
tions. Most of the time the event graph can remain on disk.

Gu et al.’s mark & retrace method [26] builds a CRDT-like
structure containing the entire editing history, not only the
parts being merged. Differential synchronization [18] relies
on heuristics such as similarity-matching of text to perform
merges, which is not guaranteed to converge.

Version control systems such as Git [14], Pijul [39], and
Darcs [2] also track the editing history of text files. How-
ever, they do not support real-time collaboration, and they
are line-based (good for code), whereas Eg-walker is char-
acter-based (which is better for prose). Git uses a three-way
merge, which is not reliable on files containing substantial
repeated text [29]. Merges in Darcs have worst-case expo-
nential complexity [35], and Pijul merges using a CRDT that
assigns a unique ID to every line [3].

6 Conclusion
Eg-walker is a new approach to collaborative text editing
that has characteristics of both CRDTs and OT. It is orders of
magnitude faster than existing algorithms in the best cases,
and competitive with the fastest existing implementations
in the worst cases. Compared to existing CRDTs, it uses
orders of magnitude less memory in the steady state, files
are vastly faster to load for editing, and in documents with
largely sequential editing edits from other users are merged
much faster. Compared to OT, large merges (e.g., when two
users each did a significant amount of work while offline)
are much faster, and Eg-walker supports arbitrary branch-
ing/merging patterns (e.g., in peer-to-peer collaboration).

Since Eg-walker stores a fine-grained editing history of a
document, it allows applications to show that history to the
user, and to restore arbitrary past versions of a document by
replaying subsets of the graph. The underlying event graph
is not specific to the Eg-walker algorithm, so we expect that
the same data format will be able to support future collabo-
rative editing algorithms as well. The core idea of Eg-walker

12



is not specific to plain text; we believe it can be extended to
other file types such as rich text, graphics, or spreadsheets.

Until now, many applications have been implemented us-
ing centralised server-based OT to avoid the overheads of
CRDTs. Eg-walker is the first CRDT to surpass OT’s perfor-
mance, and it requires no server. This breakthrough makes
it possible for decentralised, local-first software [32] to be-
come competitive with traditional cloud software.

Acknowledgements
This work was made possible by the generous support from
Michael Toomim, the Braid community and the Invisible
College. None of this would have been possible without
financial support and the endless conversations we have
shared about collaborative editing. Thank you to Matthew
Weidner and Joe Hellerstein for feedback on a draft of this
paper.

References
[1] Automerge CRDT.  Retrieved from https://automerge.org/

[2] Darcs.  Retrieved from https://darcs.net/

[3] The Pijul manual: Theory.  Retrieved from https://pijul.org/manual/
theory.html

[4] Node.js source code: src/node.cc.  Retrieved from https://github.com/
nodejs/node/blob/main/src/node.cc

[5] Makefile for Git.  Retrieved from https://github.com/git/git/blob/
master/Makefile

[6] Daniel J Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos,
and Samuel Madden. 2013. The Design and Implementation of Mod-
ern Column-Oriented Database Systems. Foundations and Trends in
Databases 5, 3 (2013), 197–280. https://doi.org/10.1561/1900000024

[7] Paulo Sérgio Almeida. 2023. Approaches to Conflict-free Replicated
Data Types. (October 2023). Retrieved from https://arxiv.org/abs/
2310.18220

[8] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morri-
son, Hongseok Yang, and Marek Zawirski. 2016. Specification and
Complexity of Collaborative Text Editing. In ACM Symposium on
Principles of Distributed Computing (PODC), 2016. 259–268. https://
doi.org/10.1145/2933057.2933090

[9] Carlos Baquero, Paulo Sergio Almeida, and Ali Shoker. 2017. Pure Op-
eration-Based Replicated Data Types.  Retrieved from https://arxiv.
org/abs/1710.04469

[10] Jim Bauwens and Elisa Gonzalez Boix. 2023. Nested Pure Operation-
Based CRDTs. In 37th European Conference on Object-Oriented Pro-
gramming (ECOOP 2023), July 2023. Schloss Dagstuhl, 1–26. https://
doi.org/10.4230/LIPIcs.ECOOP.2023.2

[11] Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Light-
weight causal and atomic group multicast. ACM Transactions on Com-
puter Systems 9, 3 (August 1991), 272–314. https://doi.org/10.1145/
128738.128742

[12] Hans-J. Boehm, Russ Atkinson, and Michael Plass. 1995. Ropes: An
alternative to strings. Software Practice and Experience 25, 12 (1995),
1315–1330. https://doi.org/10.1002/spe.4380251203

[13] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Intro-
duction to Reliable and Secure Distributed Programming (second ed.).
Springer.

[14] James Coglan. 2019. Building Git.  Retrieved from https://shop.
jcoglan.com/building-git/

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. 2009. Introduction to Algorithms (third ed.). MIT Press.

[16] John Day-Richter. 2010. What's different about the new Google Docs:
Making collaboration fast.  Retrieved from https://drive.googleblog.
com/2010/09/whats-different-about-new-google-docs.html

[17] C A Ellis and S J Gibbs. 1989. Concurrency control in groupware sys-
tems. In ACM International Conference on Management of Data (SIG-
MOD), 1989. 399–407. https://doi.org/10.1145/67544.66963

[18] Neil Fraser. 2009. Differential synchronization. In 9th ACM Sympo-
sium on Document Engineering (DocEng), 2009. ACM, 13–20. https://
doi.org/10.1145/1600193.1600198

[19] Joseph Gentle. Reference Eg-walker implementation in Typescript.
Retrieved from https://github.com/josephg/reference-reg

[20] Joseph Gentle. Diamond Types: A fully featured realtime editing li-
brary.  Retrieved from https://github.com/josephg/diamond-types

[21] Joseph Gentle. ShareDB.  Retrieved from https://github.com/share/
sharedb

[22] Joseph Gentle. Editing Traces (github repository).  Retrieved from
https://github.com/josephg/editing-traces

[23] Joseph Gentle. 2021. 5000x faster CRDTs: An Adventure in Optimiza-
tion.  Retrieved from https://josephg.com/blog/crdts-go-brrr/

[24] Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and
Alastair R Beresford. 2017. Verifying strong eventual consistency in
distributed systems. Proceedings of the ACM on Programming Lan-
guages (PACMPL) 1, OOPSLA (October 2017). https://doi.org/10.1145/
3133933

[25] Alex Good and Andrew Jeffery. Automerge Binary Document
Format.  Retrieved from https://automerge.org/automerge-binary-
format-spec/

[26] Ning Gu, Jiangming Yang, and Qiwei Zhang. 2005. Consistency main-
tenance based on the mark & retrace technique in groupware sys-
tems. In ACM International Conference on Supporting Group Work
(GROUP), November 2005. ACM, 264–273. https://doi.org/10.1145/
1099203.1099250

[27] Joseph M Hellerstein. 2010. The Declarative Imperative: Experiences
and Conjectures in Distributed Logic. ACM SIGMOD Record 39, 1
(September 2010), 5–19. https://doi.org/10.1145/1860702.1860704

[28] Kevin Jahns. Yjs Shared Editing.  Retrieved from https://yjs.dev/

[29] Sanjeev Khanna, Keshav Kunal, and Benjamin C Pierce. 2007. A For-
mal Investigation of Diff3. In 27th International Conference on Foun-
dations of Software Technology and Theoretical Computer Science (F-
STTCS), December 2007. Springer, 485–496. https://doi.org/10.1007/
978-3-540-77050-3_40

[30] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-Free
Replicated JSON Datatype. IEEE Transactions on Parallel and Distrib-
uted Systems 28, 10 (April 2017), 2733–2746. https://doi.org/10.1109/
TPDS.2017.2697382

[31] Martin Kleppmann, Annette Bieniusa, and Marc Shapiro. CRDT Pa-
pers.  Retrieved from https://crdt.tech/papers.html

[32] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You own your data, in
spite of the cloud. In ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2019), October 2019. ACM, 154–178. https://doi.org/10.1145/
3359591.3359737

13

https://automerge.org/
https://darcs.net/
https://pijul.org/manual/theory.html
https://pijul.org/manual/theory.html
https://github.com/nodejs/node/blob/main/src/node.cc
https://github.com/nodejs/node/blob/main/src/node.cc
https://github.com/git/git/blob/master/Makefile
https://github.com/git/git/blob/master/Makefile
https://doi.org/10.1561/1900000024
https://arxiv.org/abs/2310.18220
https://arxiv.org/abs/2310.18220
https://doi.org/10.1145/2933057.2933090
https://arxiv.org/abs/1710.04469
https://arxiv.org/abs/1710.04469
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1002/spe.4380251203
https://shop.jcoglan.com/building-git/
https://shop.jcoglan.com/building-git/
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/1600193.1600198
https://github.com/josephg/reference-reg
https://github.com/josephg/diamond-types
https://github.com/share/sharedb
https://github.com/share/sharedb
https://github.com/josephg/editing-traces
https://josephg.com/blog/crdts-go-brrr/
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://automerge.org/automerge-binary-format-spec/
https://automerge.org/automerge-binary-format-spec/
https://doi.org/10.1145/1099203.1099250
https://doi.org/10.1145/1099203.1099250
https://doi.org/10.1145/1860702.1860704
https://yjs.dev/
https://doi.org/10.1007/978-3-540-77050-3_40
https://doi.org/10.1007/978-3-540-77050-3_40
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://crdt.tech/papers.html
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737


[33] Martin Kleppmann. 2019. Experiment: columnar data encoding
for Automerge.  Retrieved from https://github.com/automerge/
automerge-perf/blob/master/columnar/README.md

[34] Martin Kleppmann. 2020. Benchmarking resources for Automerge.
Retrieved from https://github.com/automerge/automerge-perf

[35] Eric Kow. Understanding Darcs.  Retrieved from https://en.
wikibooks.org/wiki/Understanding_Darcs/Print_Version

[36] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM 21, 7 (1978), 558–565.
https://doi.org/10.1145/359545.359563

[37] Du Li and Rui Li. 2006. A performance study of group editing algo-
rithms. In 12th International Conference on Parallel and Distributed
Systems (ICPADS), July 2006. https://doi.org/10.1109/icpads.2006.18

[38] Karissa Rae McKelvey, Scott Jenson, Eileen Wagner, Blaine Cook,
and Martin Kleppmann. 2023. Upwelling: Combining real-time collab-
oration with version control for writers.  Retrieved from https://www.
inkandswitch.com/upwelling/

[39] Pierre-Étienne Meunier and Florent Becker. Pijul.  Retrieved from
https://pijul.org/

[40] David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping.
1995. High-latency, low-bandwidth windowing in the Jupiter collab-
oration system. In 8th Annual ACM Symposium on User Interface and
Software Technology (UIST), 1995. 111–120. https://doi.org/10.1145/
215585.215706

[41] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma.
2016. Near Real-Time Peer-to-Peer Shared Editing on Extensible Data
Types. In 19th International Conference on Supporting Group Work
(GROUP 2016), November 2016. ACM, 39–49. https://doi.org/10.1145/
2957276.2957310

[42] Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. 2006.
Tombstone Transformation Functions for Ensuring Consistency in
Collaborative Editing Systems. In 9th IEEE International Conference on
Collaborative Computing (CollaborateCom), November 2006. https://
doi.org/10.1109/colcom.2006.361867

[43] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006.
Data consistency for P2P collaborative editing. In ACM Conference
on Computer Supported Cooperative Work (CSCW), 2006. 259–268.
https://doi.org/10.1145/1180875.1180916

[44] Peng Lyu. 2018. Text Buffer Reimplementation.  Re-
trieved from https://code.visualstudio.com/blogs/2018/03/23/text-
buffer-reimplementation

[45] Nuno Preguiça, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.
2009. A Commutative Replicated Data Type for Cooperative Editing.
In 29th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), 2009. 395–403. https://doi.org/10.1109/icdcs.2009.20

[46] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. 1996.
An integrating, transformation-oriented approach to concurrency
control and undo in group editors. In ACM Conference on Computer
Supported Cooperative Work (CSCW), 1996. 288–297. https://doi.org/
10.1145/240080.240305

[47] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee.
2011. Replicated Abstract Data Types: Building Blocks for Collabora-
tive Applications. Journal of Parallel and Distributed Computing 71, 3
(March 2011), 354–368. https://doi.org/10.1016/j.jpdc.2010.12.006

[48] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free Replicated Data Types. In 13th International Con-
ference on Stabilization, Safety, and Security of Distributed Systems
(SSS 2011), October 2011. 386–400. https://doi.org/10.1007/978-3-642-
24550-3_29

[49] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC
Sivaramakrishnan. 2022. Certified mergeable replicated data types.
In 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI), 2022. ACM, 332–347.
https://doi.org/10.1145/3519939.3523735

[50] Michael Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin,
Samuel Madden, Elizabeth O'Neil, Patrick O'Neil, Alexander Rasin,
Nga Tran, and Stanley Zdonik. 2005. C-Store: A Column-oriented
DBMS. In 31st International Conference on Very Large Data Bases
(VLDB), 2005. 553–564.

[51] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David
Chen. 1998. Achieving convergence, causality preservation, and in-
tention preservation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction 5, 1 (March 1998), 63–
108. https://doi.org/10.1145/274444.274447

[52] David Sun, Chengzheng Sun, Agustina Ng, and Weiwei Cai. 2020.
Real Differences between OT and CRDT in Correctness and Com-
plexity for Consistency Maintenance in Co-Editors. Proceedings of the
ACM on Human-Computer Interaction 4, CSCW1 (May 2020), 1–30.
https://doi.org/10.1145/3392825

[53] Bartosz Sypytkowski, Kevin Jahns, and John Waidhofer. Y CRDT:
Rust port of Yjs.  Retrieved from https://github.com/y-crdt/y-crdt

[54] Michael Toomim. 2024. CRDT and OT generalize as Time Machines.
Retrieved from https://braid.org/time-machines

[55] Matthew Weidner and Martin Kleppmann. 2023. The Art of the Fugue:
Minimizing Interleaving in Collaborative Text Editing.  Retrieved
from https://arxiv.org/abs/2305.00583

[56] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2010. Logoot-Undo:
Distributed Collaborative Editing System on P2P Networks. IEEE
Transactions on Parallel and Distributed Systems 21, 8 (2010), 1162–
1174. https://doi.org/10.1109/tpds.2009.173

14

https://github.com/automerge/automerge-perf/blob/master/columnar/README.md
https://github.com/automerge/automerge-perf/blob/master/columnar/README.md
https://github.com/automerge/automerge-perf
https://en.wikibooks.org/wiki/Understanding_Darcs/Print_Version
https://en.wikibooks.org/wiki/Understanding_Darcs/Print_Version
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/icpads.2006.18
https://www.inkandswitch.com/upwelling/
https://www.inkandswitch.com/upwelling/
https://pijul.org/
https://doi.org/10.1145/215585.215706
https://doi.org/10.1145/215585.215706
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1109/colcom.2006.361867
https://doi.org/10.1145/1180875.1180916
https://code.visualstudio.com/blogs/2018/03/23/text-buffer-reimplementation
https://code.visualstudio.com/blogs/2018/03/23/text-buffer-reimplementation
https://doi.org/10.1109/icdcs.2009.20
https://doi.org/10.1145/240080.240305
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/3519939.3523735
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/3392825
https://github.com/y-crdt/y-crdt
https://braid.org/time-machines
https://arxiv.org/abs/2305.00583
https://doi.org/10.1109/tpds.2009.173


Table 1. The text editing traces used in our evaluation. Repeats: Number of times the original trace was repeated to normalise
its length relative to the other traces. Events: total number of editing events, in thousands, including repeats. Each inserted
or deleted character counts as one event. Average concurrency: mean number of concurrent branches per event in the trace.
Graph runs: number of sequential runs of events (linear event sequences without branching/merging). Authors: number of
users who added at least one event. Chars remaining: percentage of inserted characters that remain in the document (i.e.,
are never deleted) after all events have been merged. Final size: Resulting document size in kilobytes after all events have
been merged.

Name Type Repeats Events (k) Avg Concurrency Graph runs Authors Chars remaining (%) Final size (kB)

S1 sequential 3 779 0 1 2 57.5 307.2

S2 sequential 3 1105 0 1 1 26.7 166.3

S3 sequential 1 2218 0 1 2 7.5 84.4

C1 concurrent 25 652 0.43 92101 2 90.1 521.5

C2 concurrent 25 608 0.44 133626 2 93 516.3

A1 asynchronous 1 947 0.1 101 194 7.8 37.2

A2 asynchronous 2 698 6.11 2430 299 49.6 222

A Editing Traces
Table  1 gives an overview of the editing traces used in
our evaluation (Section  4). All traces are freely available
for benchmarking collaborative text editing algorithms on
GitHub [22]. The traces represent the editing history of the
following documents:

Sequential Traces These traces have no concurrency.
They were recorded using an instrumented text edi-
tor that recorded keystroke-granularity editing events.
Trace S1 is the LaTeX source of a journal paper [30,34]
written by two authors who took turns. S2 is the text
of an 8,800-word, single-author blog post [23]. S3 is the
Typst source of this paper that you are currently read-
ing.

Concurrent Traces Trace C1 is two users in the same
document, writing a reflection on an episode of a TV
series they have just watched. C2 is two users collabo-
ratively reflecting on going to clown school together.
We recorded these real-time collaborations with key-
stroke granularity, and we added 1 sec (C1) or 0.5 sec
(C2) artificial latency between the collaborating users
to increase the incidence of concurrent operations.

Asynchronous Traces We reconstructed the editing trace
of some files in Git repositories. The event graph mir-
rors the branching/merging of Git commits. Since Git
does not record individual keystrokes, we generated
the minimal edit operations necessary to perform each
commit’s diff. Trace A1 is src/node.cc from the Git
repository for Node.js [4], and A2 is Makefile from the
Git repository for Git itself [5].

We recorded the sequential and concurrent traces ourselves,
collaborating with friends or colleagues. All contributors to
the traces have given their consent for their recorded key-
stroke data to be made publicly available and to be used for

benchmarking purposes. The asynchronous traces are de-
rived from public data on GitHub.

The recorded editing traces originally varied a great deal
in length. To allow easier comparison of measurements be-
tween traces, we have attempted to roughly standardise the
sizes of all editing traces to contain approximately 500k
inserted characters (with the exception of S3, which is ap-
proximately twice this size). We did this by duplicating the
shorter event graphs multiple times in our data files, with-
out introducing any concurrency (that is, all events from
one run of the trace happen either before or after all events
from another run). We repeat the original S1 and S2 traces 3
times, the original C1 and C2 traces 25 times, and the orig-
inal A2 trace twice. The statistics given in Table 1 are after
duplication.

B Proof of Correctness
We now demonstrate that Eg-walker is a correct collabora-
tive text algorithm by showing that it satisfies the strong
list specification proposed by Attiya et al. [8], a formal spec-
ification of collaborative text editing. Informally speaking,
this specification requires that replicas converge to the same
document state, that this state contains exactly those char-
acters that were inserted but not deleted, and that inserted
characters appear in the correct place relative to the charac-
ters that surrounded it at the time it was inserted. Assuming
network partitions are eventually repaired, this is a stronger
specification than strong eventual consistency [48], which is
a standard correctness criterion for CRDTs [24].

With a suitable algorithm for ordering concurrent inser-
tions at the same position, Eg-walker is also able to achieve
maximal non-interleaving [55], which is a further strength-
ening of the strong list specification. However, since that al-
gorithm is out of scope of this paper, we also leave the proof
of non-interleaving out of scope.

15



B.1 Definitions
Let 𝖢𝗁𝖺𝗋 be the set of characters that can be inserted in
a document. Let 𝖮𝗉 = {𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐) | 𝑖 ∈ ℕ ∧ 𝑐 ∈ 𝖢𝗁𝖺𝗋} ∪
{𝐷𝑒𝑙𝑒𝑡𝑒(𝑖) | 𝑖 ∈ ℕ} be the set of possible operations. Let 𝖨𝖣
be the set of unique event identifiers, and let 𝖤𝗏𝗍 = 𝖨𝖣 ×
𝒫(𝖨𝖣) × 𝖮𝗉 be the set of possible events consisting of a
unique ID, a set of parent event IDs, and an operation. When
𝑒 ∈ 𝐺 and 𝑒 = (𝑖, 𝑝, 𝑜) we also use the notation 𝑒.𝑖𝑑 = 𝑖,
𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠 = 𝑝, and 𝑒.𝑜𝑝 = 𝑜.

Definition 1 :  An event graph 𝐺 ⊆ 𝖤𝗏𝗍 is valid if:
1. every event 𝑒 ∈ 𝐺 has an ID 𝑒.𝑖𝑑 that is unique in 𝐺;
2. for every event 𝑒 ∈ 𝐺, every parent ID 𝑝 ∈ 𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠

is the ID of some other event in 𝐺;
3. the graph is acyclic, i.e. there is no subset of events

{𝑒1, 𝑒2, …, 𝑒𝑛} ⊆ 𝐺 such that 𝑒1 is a parent of 𝑒2, 𝑒2
is a parent of 𝑒3, …, and 𝑒𝑛 is a parent of 𝑒1; and

4. for every event 𝑒 ∈ 𝐺, the index at which 𝑒.𝑜𝑝 inserts
or deletes is an index that exists (is not beyond the end
of the document) in the document version defined by
the parents 𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠.

Since event graphs grow monotonically and we never re-
move events, it is easy to ensure that the graph remains valid
whenever a new event is added to it.

Attiya et al. make a simplifying assumption that every in-
sertion operation has a unique character. We use a slightly
stronger version of the specification that avoids this as-
sumption. We also simplify the specification by using our
event graph definition instead of the original abstract ex-
ecution definition (containing message broadcast/receive
events and a visibility relation). These changes do not affect
the substance of the proof: each node of our event graph
corresponds to a do event in the original strong list spec-
ification, and the transitive closure of our event graph is
equivalent to the visibility relation.

Given an event graph 𝐺 we define a replay function
𝗋𝖾𝗉𝗅𝖺𝗒(𝐺) as introduced in Section  2.4, based on the Eg-
walker algorithm. It iterates over the events in 𝐺 in some
topologically sorted order, transforming the operation in
each event as described in Section 3, and then applying the
transformed operation to the document state resulting from
the operations applied so far (starting with the empty doc-
ument). In a real implementation, 𝗋𝖾𝗉𝗅𝖺𝗒 returns the final
document state as a concatenated sequence of characters.
For the sake of this proof, we define 𝗋𝖾𝗉𝗅𝖺𝗒 to instead return
a sequence of (𝑖𝑑, 𝑐) pairs, where 𝑖𝑑 is the unique ID of the
event that inserted the character 𝑐. This allows us to distin-
guish between different occurrences of the same character.
The text of the document can be recovered by simply ignor-
ing the 𝑖𝑑 of each pair and concatenating the characters.

We can now state our modified definition of the strong
list specification:

Definition 2 :  A collaborative text editing algorithm with
a replay function 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺) satisfies the strong list specifi-
cation if for every valid event graph 𝐺 ⊂ 𝖤𝗏𝗍 there exists a
relation 𝑙𝑜 ⊂ 𝖨𝖣 × 𝖨𝖣 called the list order, such that:

1. For event 𝑒 ∈ 𝐺, let 𝐺𝑒 = {𝑒} ∪ 𝖤𝗏𝖾𝗇𝗍𝗌(𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠)
be the subset of 𝐺 consisting of 𝑒 and all events
that happened before 𝑒. Let 𝑑𝑜𝑐𝑒 = 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺𝑒) =
⟨(𝑖𝑑0, 𝑐0), …, (𝑖𝑑𝑛−1, 𝑐𝑛−1)⟩ be the document state
immediately after locally generating 𝑒, where 𝑐𝑖 ∈
𝖢𝗁𝖺𝗋 and 𝑖𝑑𝑖 ∈ 𝖨𝖣. Then:

(a) 𝑑𝑜𝑐𝑒 contains exactly the elements that have
been inserted but not deleted in 𝐺𝑒:

(∃𝑖 ∈ [0, 𝑛 − 1] : 𝑑𝑜𝑐𝑒[𝑖] = (𝑖𝑑, 𝑐)) ⟺
(∃𝑎 ∈ 𝐺𝑒, 𝑗 ∈ ℕ : 𝑎.𝑖𝑑 = 𝑖𝑑 ∧ 𝑎.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑗, 𝑐)) ∧

(∄𝑏 ∈ 𝐺𝑒, 𝑘 ∈ ℕ : 𝑏.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑘) ∧
𝗋𝖾𝗉𝗅𝖺𝗒(𝖤𝗏𝖾𝗇𝗍𝗌(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡𝑠))[𝑘] = (𝑖𝑑, 𝑐)).

(b) The order of the elements in 𝑑𝑜𝑐𝑒 is consistent
with the list order:

∀𝑖, 𝑗 ∈ [0, 𝑛 − 1] : 𝑖 < 𝑗 ⟹ (𝑖𝑑𝑖, 𝑖𝑑𝑗) ∈ 𝑙𝑜.

(c) Elements are inserted at the specified position:

∀𝑖, 𝑐 : 𝑒.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐) ⟹ 𝑑𝑜𝑐𝑒[𝑖] = (𝑒.𝑖𝑑, 𝑐)
2. The list order 𝑙𝑜 is transitive, irreflexive, and total, and

thus determines the order of all insert operations in
the event graph.

B.2 Proving Convergence
Lemma 3 : Let 𝑒 be an event in a valid event graph such that
𝑒.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑖). In the internal state immediately before
applying 𝑒 (in which all events that happened before 𝑒 have
been advanced and all others have been retreated), either
the record that 𝑒 will update has 𝑠𝑝 = 𝙸𝚗𝚜, or it is part of
a placeholder (which behaves like a sequence of 𝑠𝑝 = 𝙸𝚗𝚜
records).

Proof :  If we had 𝑠𝑝 = 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝, that would imply
that we retreated the insertion of the character deleted by
𝑒, which contradicts the fact that the insertion of a charac-
ter must happen before any deletion of the same character.
Furthermore, if we had 𝑠𝑝 = 𝙳𝚎𝚕 𝑘 for some 𝑘, that would
imply that an event that happened before 𝑒 already deleted
the same character, in which case it would not be possible to
generate 𝑒. This leaves 𝑠𝑝 = 𝙸𝚗𝚜 or placeholder as the only
options that do not result in a contradiction. □

Lemma 4 : Let 𝑆0 be some internal Eg-walker state, and let
𝑎 and 𝑏 be two concurrent events. Let 𝑆1 be the internal
state resulting from updating 𝑆0 with retreat and advance
calls so that the prepare version of 𝑆1 equals the parents of
𝑏. Let 𝑆2 be the internal state resulting from first replaying
𝑎 on top of 𝑆0, and then retreating and advancing so that
the prepare version of 𝑆2 equals the parents of 𝑏. Then the
only difference between 𝑆1 and 𝑆2 is in the record inserted

16



or updated by 𝑎 (and possibly the split of a placeholder that
this record falls within); the rest of 𝑆1 and 𝑆2 is the same.

Proof :  Since 𝑆0 is produced by Eg-walker, it contains
records for all characters that have been inserted or deleted
by events since the last critical version prior to 𝑎 and 𝑏, it
contains placeholders for any characters inserted but not
deleted prior to that critical version, and it does not contain
anything for characters that were deleted prior to that crit-
ical version. By the definition of critical version, any event
𝑒 that is concurrent with 𝑎 or 𝑏 must be after the critical
version, and therefore the record that is updated by 𝑒 must
exist in 𝑆0.

𝑆1 has the same record sequence and the same 𝑠𝑒 in each
record as 𝑆0, since retreating and advancing do not change
those things. The 𝑠𝑝 values in 𝑆1 are set so that every
record inserted by an event concurrently with 𝑏 has 𝑠𝑝 =
𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝, every record whose insertion happened
before 𝑏 but which was not deleted before 𝑏 has 𝑠𝑝 = 𝙸𝚗𝚜,
and every record that was deleted by 𝑘 > 0 separate events
before 𝑏 has 𝑠𝑝 = 𝙳𝚎𝚕 𝑘. To achieve this it is sufficient to
consider events that happened after the last critical version.
Thus, the 𝑠𝑝 values in 𝑆1 do not depend on the 𝑠𝑝 values in
𝑆0, and they do not depend on any events that are concur-
rent with 𝑏.

Replaying 𝑎 on top of 𝑆0 involves first updating the 𝑠𝑝
values to set the prepare version to the parents of 𝑎 (which
may differ from the parents of 𝑏), and then applying 𝑎, which
either inserts or updates a record in the internal state, and
possibly splits a placeholder to accommodate this record. 𝑆2
is then produced by updating all of the 𝑠𝑝 values in the same
way as for 𝑆1. As these 𝑠𝑝 values depend only on 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡𝑠
and not on 𝑎, 𝑆2 is identical to 𝑆1 except for the record in-
serted or updated by 𝑎. □

Lemma 5 : Let 𝑎 and 𝑏 be two concurrent events such that
𝑎.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐𝑖) and 𝑏.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑗, 𝑐𝑗). If we start
with some internal state and document state and then replay
𝑎 followed by 𝑏, the resulting internal state and document
state are the same as if we had replayed 𝑏 followed by 𝑎.

Proof :  To replay 𝑎 followed by 𝑏, we first retreat/advance
so that the prepare state corresponds to 𝑎.𝑝𝑎𝑟𝑒𝑛𝑡𝑠, then ap-
ply 𝑎, then retreat 𝑎, then retreat/advance so that the pre-
pare state corresponds to 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡𝑠, then apply 𝑏. Applying
𝑎 inserts a record into the internal state, and after retreat-
ing 𝑎 this record has 𝑠𝑝 = 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝 and 𝑠𝑒 = 𝙸𝚗𝚜.
Since 𝑏 is concurrent to 𝑎, 𝑎 cannot be a critical version, and
therefore the internal state is not cleared after applying 𝑎.
When 𝑏 is applied, the presence of the record inserted by 𝑎
is the only difference between the internal state when ap-
plying 𝑏 after 𝑎 compared to applying 𝑏 without applying
𝑎 first (by Lemma 4). When determining the insertion posi-
tion in the internal state for 𝑏’s record based on 𝑏’s index 𝑗,

the record inserted by 𝑎 does not count since it has 𝑠𝑝 =
𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝. Therefore, 𝑏’s record is inserted into the
internal state at the same position relative to its neighbours,
regardless of whether 𝑎 has been applied previously. By sim-
ilar argument the same holds for 𝑎’s record.

As explained in Section 3.3, the internal state uses a CRDT
algorithm to place the records in the internal state in a con-
sistent order, regardless of the order in which the events are
applied. The details of that algorithm go beyond the scope
of this paper. The key property of that algorithm is that the
final sequence of internal state records is the same, regard-
less of whether we apply first 𝑎 and then 𝑏, or vice versa. For
example, if we first apply 𝑎 then 𝑏, and if the final position
of 𝑏’s record in the internal state is after 𝑎’s record, then the
CRDT algorithm has to skip over 𝑎’s record (and potentially
other, concurrently inserted records) when determining the
insertion position for 𝑏’s record. This process never needs to
skip over a placeholder, since placeholders represent char-
acters that were inserted before the last critical version. It
only ever needs to skip over records for insertions that are
concurrent with 𝑎 or 𝑏; by the definition of critical versions,
all such insertion events appear after the last critical version
(and hence after the last internal state clearing) in the topo-
logical sort, and therefore they are represented by explicit
internal state records, not placeholders.

Now we consider the document state. WLOG assume that
the record inserted by 𝑎 appears at an earlier position in the
internal state than the record inserted by 𝑏 (regardless of the
order of applying 𝑎 and 𝑏). Let 𝑖′ be the transformed index
of 𝑎.𝑜𝑝 when 𝑎 is applied first, and let 𝑗′ be the transformed
index of 𝑏.𝑜𝑝 when 𝑏 is applied first.

Say we replay 𝑎 before 𝑏. When computing the trans-
formed index for 𝑏, the internal state record for 𝑎 has 𝑠𝑝 =
𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝, and hence it is not counted when map-
ping 𝑏.𝑜𝑝’s index 𝑗 to 𝑏’s internal state record. However, 𝑎’s
record is counted when mapping 𝑏’s internal state record
back to an index, since 𝑎’s record has 𝑠𝑒 = 𝙸𝚗𝚜 and it ap-
pears before 𝑏’s record. Therefore the transformed index for
𝑏.𝑜𝑝 is 𝑗′ + 1 when applied after 𝑎. On the other hand, if we
replay 𝑏 before 𝑎, the record for 𝑏 appears after the record
for 𝑎 in the internal state, so the transformed index for 𝑎 is
𝑖′, unaffected by 𝑏. Thus, we have the situation as shown in
Figure 1, and the effect of the two insertions 𝑎 and 𝑏 on the
document state is the same regardless of their order. □

Lemma 6 : Let 𝑎 and 𝑏 be two concurrent events such that
𝑎.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐) and 𝑏.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑗). If we start with
some internal state and document state and then replay 𝑎
followed by 𝑏, the resulting internal state and document
state are the same as if we had replayed 𝑏 followed by 𝑎.

Proof :  Since 𝑎 and 𝑏 are concurrent, the character being
deleted by 𝑏 cannot be the character inserted by 𝑎. We there-
fore only need to consider two cases: (1) the record inserted

17



by 𝑎 has an earlier position in the internal state than the
record updated by 𝑏; or (2) vice versa.

Case (1): If we replay 𝑎 before 𝑏, we first apply 𝑎, then re-
treat 𝑎, then apply 𝑏 (and also retreat/advance other events
before applying, like in Lemma  5). Applying 𝑎 inserts a
record into the internal state, and after retreating 𝑎 this
record has 𝑠𝑝 = 𝙽𝚘𝚝𝙸𝚗𝚜𝚎𝚛𝚝𝚎𝚍𝚈𝚎𝚝 and 𝑠𝑒 = 𝙸𝚗𝚜. When
subsequently applying 𝑏 we update an internal state record
at a later position. The record inserted by 𝑎 is not counted
when mapping 𝑏’s index to an internal record, but it is
counted when mapping the internal record back to a trans-
formed index, resulting in 𝑏’s transformed index being one
greater than it would have been without earlier applying 𝑎
(by Lemma 4). On the other hand, if we replay 𝑏 before 𝑎,
the record updated by 𝑏 appears after 𝑎’s record in the in-
ternal state, so the transformation of 𝑎 is not affected by 𝑏.
The transformed operations therefore converge.

Case (2): If we replay 𝑏 before 𝑎, we first apply 𝑏, then re-
treat 𝑏, then apply 𝑎 (plus other retreats/advances). Apply-
ing 𝑏 updates an existing record in the internal state (possi-
bly splitting a placeholder in the process). Before applying
𝑏 this record must have 𝑠𝑝 = 𝙸𝚗𝚜 (by Lemma 3), and it can
have either 𝑠𝑒 = 𝙸𝚗𝚜 (in which case, the transformed oper-
ation for 𝑏 is 𝐷𝑒𝑙𝑒𝑡𝑒(𝑗′) for some transformed index 𝑗′) or
𝑠𝑒 = 𝙳𝚎𝚕 (in which case, 𝑏 is transformed into a no-op). Af-
ter applying and retreating 𝑏 this record has 𝑠𝑝 = 𝙸𝚗𝚜 and
𝑠𝑒 = 𝙳𝚎𝚕 in any case. We next apply 𝑎, which by assump-
tion inserts a record into the internal state at a later position
than 𝑏’s record. If we had 𝑠𝑒 = 𝙳𝚎𝚕 before applying 𝑏, the
process of applying and retreating 𝑏 did not change the in-
ternal state, so the transformed operation for 𝑎 is the same
as if 𝑏 had not been applied, which is consistent with the
fact that 𝑏 was transformed into a no-op. If we had 𝑠𝑒 = 𝙸𝚗𝚜
before applying 𝑏, 𝑏’s record is counted when mapping 𝑎’s
index to an internal record position, but not counted when
mapping the internal record back to a transformed index,
resulting in 𝑎’s transformed index being one less than it
would have been without earlier applying 𝑏 (by Lemma 4),
as required given that 𝑏 has deleted an earlier character. On
the other hand, if we replay 𝑎 before 𝑏, the record inserted
by 𝑎 appears after 𝑏’s record in the internal state, so the
transformation of 𝑏 is not affected by 𝑎, and the transformed
operations converge. □

Lemma 7 : Let 𝑎 and 𝑏 be two concurrent events such that
𝑎.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑖) and 𝑏.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑗). If we start with
some internal state and document state and then replay 𝑎
followed by 𝑏, the resulting internal state and document
state are the same as if we had replayed 𝑏 followed by 𝑎.

Proof :  WLOG we need to consider two cases: (1) the record
updated by 𝑎 has an earlier position in the internal state
than the record updated by 𝑏; or (2) 𝑎 and 𝑏 update the same

internal state record. The case where 𝑎’s record has a later
position than 𝑏’s record is symmetric to (1).

Case (1): We further consider two sub-cases: (1a)  the
record that 𝑎 will update has 𝑠𝑒 = 𝙸𝚗𝚜 prior to applying 𝑎;
or (1b) the record has 𝑠𝑒 = 𝙳𝚎𝚕.

Case (1a): Say we replay 𝑎 before 𝑏. Before applying
𝑎, the record that 𝑎 will update must have 𝑠𝑝 = 𝙸𝚗𝚜 (by
Lemma 3). After applying and retreating 𝑎, the record up-
dated by 𝑎 has 𝑠𝑝 = 𝙸𝚗𝚜 and 𝑠𝑒 = 𝙳𝚎𝚕, and the transformed
operation for 𝑎 is 𝐷𝑒𝑙𝑒𝑡𝑒(𝑖′) for some transformed index
𝑖′. We subsequently apply 𝑏, which by assumption updates
an internal state record that is later than 𝑎’s. 𝑎’s record is
therefore counted when mapping the index of 𝑏.𝑜𝑝 to an in-
ternal record position, but not counted when mapping the
internal record back to a transformed index. If 𝑎 had not
been replayed previously, it would have been counted dur-
ing both mappings (by Lemma 4). Thus, if the record up-
dated by 𝑏 has 𝑠𝑒 = 𝙸𝚗𝚜, the transformed operation for 𝑏
is 𝐷𝑒𝑙𝑒𝑡𝑒(𝑗′ − 1), where 𝑗′ is the transformed index of 𝑏’s
operation if 𝑎 had not been replayed previously, and 𝑗′ −
1 ≥ 𝑖′, as required. If 𝑏’s record previously has 𝑠𝑒 = 𝙳𝚎𝚕, it
is transformed into a no-op. On the other hand, if we replay
𝑏 before 𝑎, the record updated by 𝑏 appears later than 𝑎’s
record in the internal state, so the transformation of 𝑎 is not
affected by 𝑏.

Case (1b): Say we replay 𝑎 before 𝑏. Before applying 𝑎, the
record that 𝑎 will update must have 𝑠𝑝 = 𝙸𝚗𝚜 (by Lemma 3),
and 𝑠𝑒 = 𝙳𝚎𝚕 by assumption. After applying and retreating
𝑎, the record updated by 𝑎 remains in the same state (𝑠𝑝 =
𝙸𝚗𝚜, 𝑠𝑒 = 𝙳𝚎𝚕), and the transformed operation for 𝑎 is a
no-op. When we subsequently apply 𝑏, the transformed op-
eration is therefore the same as if 𝑎 had not been applied,
as required. On the other hand, if we replay 𝑏 before 𝑎, the
record updated by 𝑏 appears later than 𝑎’s record in the in-
ternal state, so the transformation of 𝑎 is not affected by 𝑏.

Case (2): Before replaying both of the events, the record
that both events update may have 𝑠𝑒 = 𝙸𝚗𝚜 or 𝑠𝑒 = 𝙳𝚎𝚕,
but after applying the first event it definitely has 𝑠𝑒 = 𝙳𝚎𝚕.
The second event will therefore be transformed into a no-op.
The same happens regardless of whether 𝑎 or 𝑏 is replayed
first, so the result does not depend on the order of replay of
the two events. □

Lemma 8 : Given a valid event graph 𝐺, 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺) is a de-
terministic function. In other words, any two replicas that
have the same event graph converge to the same document
state and the same internal state.

Proof :  The algorithms to transform an operation and to ap-
ply a transformed operation to the document state are by
definition deterministic. This leaves as the only source of
nondeterminism the choice of topologically sorted order (𝐺
is valid and hence acyclic, thus at least one such order ex-
ists, but there may be several topologically sorted orders if

18



𝐺 contains concurrent events). We show that all sort orders
result in the same final document state.

Let 𝐸 = ⟨𝑒1, 𝑒2, …, 𝑒𝑛⟩ and 𝐸′ = ⟨𝑒′
1, 𝑒′

2, …, 𝑒′
𝑛⟩ be two

topological sort orders of 𝐺 = {𝑒1, 𝑒2, …, 𝑒𝑛}. Then 𝐸′

must be a permutation of 𝐸. Both sequences are in some
causal order, that is: if 𝑒𝑖 → 𝑒𝑗 (𝑒𝑖 happens before 𝑒𝑗, as de-
fined in Section 2.2), then 𝑒𝑖 must appear before 𝑒𝑗 in both
𝐸 and 𝐸′. If 𝑒𝑖 ∥ 𝑒𝑗 (they are concurrent), the events could
appear in either order. Therefore, it is possible to transform
𝐸 into 𝐸′ by repeatedly swapping two concurrent events
that are adjacent in the sequence. We show that at each such
swap we maintain the invariant that the document state and
the internal state resulting from replaying the events in the
order before the swap are equal to the states resulting from
replaying the events in the order after the swap. Therefore,
the document state and the internal state resulting from re-
playing 𝐸 are equal to those resulting from 𝐸′.

Let ⟨𝑒1, 𝑒2, …, 𝑒𝑖, 𝑒𝑖+1, …, 𝑒𝑛⟩ be the sequence of events
prior to one of these swaps, and 𝑒𝑖, 𝑒𝑖+1 are the events to be
swapped. Replaying the events in the prefix ⟨𝑒1, 𝑒2, …, 𝑒𝑖−1⟩
is a deterministic algorithm resulting in some document
state and some internal state. Next, we replay either 𝑒𝑖 fol-
lowed by 𝑒𝑖+1, or 𝑒𝑖+1 followed by 𝑒𝑖. Since 𝑒𝑖 and 𝑒𝑖+1 are
concurrent, it is not possible for only one of the two to be
contained in a critical version, and therefore no state clear-
ing will take place between applying these two events. If 𝑒𝑖
and 𝑒𝑖+1 are both insertions, the resulting states in either
order are the same by Lemma 5. If one of 𝑒𝑖 and 𝑒𝑖+1 is an
insertion and the other is a deletion, we use Lemma 6. If
both 𝑒𝑖 and 𝑒𝑖+1 are deletions, we use Lemma 7. Finally, re-
playing the suffix ⟨𝑒𝑖+2, …, 𝑒𝑛⟩ is a deterministic algorithm.
This shows that concurrent operations commute. □

B.3 Satisfying the Strong List Specification
Lemma 9 :  Let 𝐺 be a valid event graph, let 𝑑𝑜𝑐 =
𝗋𝖾𝗉𝗅𝖺𝗒(𝐺) be the document state resulting from replaying
𝐺, and let 𝑆 be the internal state after replaying 𝐺. Then the
𝑖th element in 𝑑𝑜𝑐 corresponds to the 𝑖th record with 𝑠𝑒 =
𝙸𝚗𝚜 in the internal state (counting placeholders as having
𝑠𝑒 = 𝙸𝚗𝚜, and not counting records with 𝑠𝑒 = 𝙳𝚎𝚕). More-
over, the set of elements in 𝑑𝑜𝑐 is exactly the elements that
have been inserted but not deleted in 𝐺:

(∃𝑖 ∈ [0, 𝑛 − 1] : 𝑑𝑜𝑐[𝑖] = (𝑖𝑑, 𝑐)) ⟺
(∃𝑎 ∈ 𝐺, 𝑖 ∈ ℕ : 𝑎.𝑖𝑑 = 𝑖𝑑 ∧ 𝑎.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐)) ∧

(∄𝑏 ∈ 𝐺, 𝑖 ∈ ℕ : 𝑏.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑖) ∧
𝗋𝖾𝗉𝗅𝖺𝗒(𝖤𝗏𝖾𝗇𝗍𝗌(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡𝑠))[𝑖] = (𝑖𝑑, 𝑐)).

Proof :  Let 𝐸 = ⟨𝑒1, 𝑒2, …, 𝑒𝑛⟩ be some topological sort of
𝐺, and assume that we replay 𝐺 in this order. By Lemma 8
it does not matter which of the possible orders we choose.
We then prove the thesis by induction over 𝑛, the number
of events in 𝐺. The base case is trivial: 𝐺 = {}, 𝑑𝑜𝑐 = ⟨⟩, so

there are no events, no records in the internal state, and no
elements in the document state.

Inductive step: Let 𝐸𝑘 = ⟨𝑒1, 𝑒2, …, 𝑒𝑘⟩ with 𝑘 < 𝑛 be a
prefix of 𝐸. Since the set of events in 𝐸𝑘 also forms a
valid event graph, we can assume the inductive hypothesis,
namely that replaying 𝐸𝑘 results in a document correspond-
ing to the records with 𝑠𝑒 = 𝙸𝚗𝚜 in the resulting internal
state, and the document contains exactly those elements
that have been inserted but not deleted by an operation in
𝐸𝑘. We now add 𝑒𝑘+1, the next event in the sequence 𝐸, to
the replay. We do this by transforming 𝑒𝑘+1 using the inter-
nal state obtained by replaying 𝐸𝑘, and applying the trans-
formed operation to the document state from 𝐸𝑘. We need
to show that the invariant is still preserved in the follow-
ing two cases: either (1) 𝑒𝑘+1.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑗, 𝑐) for some 𝑗,
𝑐, or (2) 𝑒𝑘+1.𝑜𝑝 = 𝐷𝑒𝑙𝑒𝑡𝑒(𝑗) for some 𝑗. We also have to
consider the case where the internal state is cleared, but we
begin with the case where no state clearing occurs.

Case (1): The set of elements that have been inserted
but not deleted grows by (𝑒𝑘+1.𝑖𝑑, 𝑐) and otherwise stays
unchanged. The transformation of an insertion opera-
tion is always another insertion operation. The document
state is therefore updated by inserting the same element
(𝑒𝑘+1.𝑖𝑑, 𝑐), and otherwise remains unchanged. Moreover,
the transformed index of that insertion is computed by
counting the number of internal state records with 𝑠𝑒 = 𝙸𝚗𝚜
that appear before the new record in the internal state, and
the new record also has 𝑠𝑒 = 𝙸𝚗𝚜, and the 𝑠𝑒 property of
no other record is updated, so the correspondence between
internal state records and document state is preserved.

Case (2): The element being deleted is at index 𝑗 in
the document at the time 𝑒𝑘+1 was generated, which is
𝗋𝖾𝗉𝗅𝖺𝗒(𝖤𝗏𝖾𝗇𝗍𝗌(𝑒𝑘+1.𝑝𝑎𝑟𝑒𝑛𝑡𝑠)). We compute this element
by retreating and advancing events until the prepare ver-
sion equals 𝑒𝑘+1.𝑝𝑎𝑟𝑒𝑛𝑡𝑠, and then finding the 𝑗th (zero-
indexed) record in the internal state that has 𝑠𝑝 = 𝙸𝚗𝚜. The
records with 𝑠𝑝 = 𝙸𝚗𝚜 are those that have been inserted
but not deleted in events that happened before 𝑒𝑘+1, and
therefore the 𝑗th such record is the record corresponding
to 𝗋𝖾𝗉𝗅𝖺𝗒(𝖤𝗏𝖾𝗇𝗍𝗌(𝑒𝑘+1.𝑝𝑎𝑟𝑒𝑛𝑡𝑠))[𝑗]. Before applying 𝑒𝑘+1,
this record may have either 𝑠𝑒 = 𝙸𝚗𝚜 or 𝑠𝑒 = 𝙳𝚎𝚕. If 𝑠𝑒 =
𝙸𝚗𝚜, we update it to 𝑠𝑒 = 𝙳𝚎𝚕, and transform 𝑒𝑘+1 into a
deletion whose index is the number of 𝑠𝑒 = 𝙸𝚗𝚜 to the left of
the target record in the internal state; by the inductive hy-
pothesis, this is the correct document element to be deleted.
If 𝑠𝑒 = 𝙳𝚎𝚕 before applying 𝑒𝑘+1, that event is transformed
into a no-op, since another operation in 𝐸𝑘 has already
deleted the element in question from the document state. In
either case, we preserve the invariants of the induction.

If 𝑒𝑘+1 is a critical version, we clear the internal state and
replace it with a placeholder. By the definition of critical
version, every event in 𝐸𝑘 and 𝑒𝑘+1 happened before every
event in the rest of 𝐸. Therefore, after retreating and ad-

19



vancing any event after 𝑒𝑘+1, any internal state record with
𝑠𝑒 = 𝙳𝚎𝚕 will also have 𝑠𝑝 = 𝙳𝚎𝚕 𝑘 for some 𝑘 > 0, and any
internal state record with 𝑠𝑒 = 𝙸𝚗𝚜 will also have 𝑠𝑝 = 𝙸𝚗𝚜
unless it is deleted by an event after 𝑒𝑘+1. Since an internal
state with 𝑠𝑒 = 𝙳𝚎𝚕 can never move to state 𝑠𝑒 = 𝙸𝚗𝚜, this
means that any records with 𝑠𝑒 = 𝙳𝚎𝚕 as of the critical ver-
sion can be discarded, since they will never again be needed
for transforming the index of an operation after 𝑒𝑘+1. More-
over, since all of the remaining records have 𝑠𝑒 = 𝑠𝑝 = 𝙸𝚗𝚜
as of the critical version, and since the replay of the remain-
ing events in 𝐸 will never need to advance or retreat an
event prior to the critical version, all of the records in the in-
ternal state can all be replaced by a single placeholder while
still preserving the invariants of the induction. □

Theorem 10 : The Eg-walker algorithm satisfies the strong
list specification (Definition 2).

Proof :  Given a valid event graph 𝐺, let 𝗋𝖾𝗉𝗅𝖺𝗒(𝐺) be the re-
play function based on Eg-walker, as introduced earlier. We
must show that there exists a list order 𝑙𝑜 ⊂ 𝖨𝖣 × 𝖨𝖣 that
satisfies the conditions given in Definition 2. We claim that
this list order corresponds exactly to the sequence of records
and placeholders in the internal state after replaying the en-
tire event graph 𝐺. By Lemma 8, this internal state exists
and is unique. This correspondence is more apparent if we
assume a variant of Eg-walker that does not clear the inter-
nal state on critical versions, but we also claim that perform-
ing the optimisations in Section 3.5 preserves this property.

To begin, note that the internal state is a totally ordered
sequence of records, and that (aside from clearing the inter-
nal state) we only ever modify this sequence by inserting
records or by updating the 𝑠𝑝 and 𝑠𝑒 properties of existing
records. Thus, if a record with ID 𝑖𝑑𝑖 appears before a record
with ID 𝑖𝑑𝑗 at some point in the replay, the order of those
IDs remains unchanged for the rest of the replay. We define
the list order 𝑙𝑜 to be the ordering relation among IDs in the
internal state after replaying 𝐺 using a Eg-walker variant
that does not clear the internal state. This order exists, is
unique (Lemma 8), and is by definition transitive, irreflexive,
and total, so it meets requirement (2) of Definition 2.

Let 𝑒 ∈ 𝐺 be any event in the graph, and let 𝐺𝑒 = {𝑒} ∪
𝖤𝗏𝖾𝗇𝗍𝗌(𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠) be the subset of 𝐺 consisting of 𝑒 and
all events that happened before 𝑒. Note that 𝐺𝑒 satisfies the
conditions in Definition 1, so it is also valid. Let 𝑑𝑜𝑐𝑒 =
𝗋𝖾𝗉𝗅𝖺𝗒(𝐺𝑒) = ⟨(𝑖𝑑0, 𝑐0), …, (𝑖𝑑𝑛−1, 𝑐𝑛−1)⟩ be the document
state immediately after locally generating 𝑒. Since 𝗋𝖾𝗉𝗅𝖺𝗒 is
deterministic (Lemma 8), 𝑑𝑜𝑐𝑒 exists and is unique.

By Lemma 9, 𝑑𝑜𝑐𝑒 contains exactly the elements that have
been inserted but not deleted in 𝐺𝑒, which is requirement
(1a) of Definition 2. Also by Lemma 9, the 𝑖th element in
𝑑𝑜𝑐𝑒 corresponds to the 𝑖th record with 𝑠𝑒 = 𝙸𝚗𝚜 in the
internal state obtained by replaying 𝐺𝑒. Since any pair of
IDs that are ordered by the internal state derived from 𝐺𝑒

retain the same ordering in the internal state derived from
𝐺, we know that the ordering of elements in 𝑑𝑜𝑐𝑒 is con-
sistent with the list order 𝑙𝑜, satisfying requirement (1b) of
Definition 2.

Finally, to demonstrate requirement (1c) of Definition 2
we assume that 𝑒.𝑜𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑐), and we need to show
that 𝑑𝑜𝑐𝑒[𝑖] = (𝑒.𝑖𝑑, 𝑐). Since 𝐺𝑒 contains only 𝑒 and events
that happened before 𝑒, but no events concurrent with 𝑒,
we know that immediately before applying 𝑒, every record
in the internal state will have 𝑠𝑝 = 𝙸𝚗𝚜 if and only if it has
𝑠𝑒 = 𝙸𝚗𝚜 (because there are no events that are reflected in
the effect version but not in the prepare version 𝑒.𝑝𝑎𝑟𝑒𝑛𝑡𝑠).
Therefore, the set of records that are counted while map-
ping the original insertion index 𝑖 to an internal state record
equals the set of records that are counted while mapping
the internal record back to a transformed index. Thus, the
transformed index of the insertion is also 𝑖, and therefore
the new element is inserted at index 𝑖 of the document as
required. This completes the proof that Eg-walker satisfies
the strong list specification. □

20


	Abstract
	Introduction
	Background
	System model
	Event graphs
	Document versions
	Replaying editing history

	The Event Graph Walker algorithm
	Characteristics of Eg-walker
	Walking the event graph
	Representing prepare and effect versions
	Mapping indexes to character IDs
	Clearing the internal state
	Partial event graph replay
	Algorithm complexity
	Storing the event graph

	Evaluation
	Editing traces
	Time taken to load and merge changes
	RAM usage
	Storage size

	Related Work
	Conclusion
	Acknowledgements
	References
	Editing Traces
	Proof of Correctness
	Definitions
	Proving Convergence
	Satisfying the Strong List Specification


